$g(x)\xrightarrow{x\to\infty}\infty$ Implies $g'(x)\leq g^{1+\varepsilon}(x)$
Recently in my ordinary differential equations class we were given the following problem:
Suppose $g:(0,\infty)\to\mathbb{R}$ is an increasing function of class $C^{1}$ such that $g(x)\xrightarrow{x\to\infty}\infty$. Show that for every $\varepsilon>0$ the inequality $g^{\prime}(x)\leq g^{1+\varepsilon}(x)$ upholds, outside a set of finite length.
I thought about using Grönwall's inequality , but i did not got any useful result.
3 answers
You are accessing this answer with a direct link, so it's being shown above all other answers regardless of its score. You can return to the normal view.
The following users marked this post as Works for me:
User | Comment | Date |
---|---|---|
Udi Fogiel | (no comment) | May 17, 2022 at 12:44 |
Calvin Khor | (no comment) | May 31, 2022 at 04:09 |
We may restrict attention to an interval $I = (A,+\infty)$ on which $g(x) > 1$. Let $\varepsilon > 0$ be given.
The set $S$ of points $x$ in $I$ at which $g'(x) > (g(x))^{1 + \varepsilon}$ is open, hence is a disjoint union of countably many open intervals of the form $(a,b)$.
Given such an interval $(a,b)$, with $b$ finite, we have $g'(x) \geq 1$ on $[a,b]$. Thus the function $y = g(x)$ has a $C^1$ inverse on $[a,b]$. Moreover the inequality $dy/dx > y^{1 + \varepsilon}$ implies $dx/dy < y^{-1-\varepsilon}$. Integrating with respect to $y$, we find $b - a \leq \int_{g(a)}^{g(b)} y^{-1-\varepsilon}dy = \frac{1}{\varepsilon}[(g(a))^{-\varepsilon} - (g(b))^{-\varepsilon}]$. (If $b = +\infty$, an obvious modification of this argument shows that $b - a$ is finite, a contradiction.)
Therefore, the length of the set $S$ is bounded above by $1/\varepsilon$ times the length of its image under the decreasing function $h(x) = (g(x))^{-\varepsilon}.$ But this image is contained in $(0,1)$.
0 comment threads
Consider $g^{-\epsilon}$. Then its first derivative is $D_x \; g^{-\epsilon} = \epsilon g^{-1-\epsilon} g'$. Then $g^{-\epsilon} > 0$ and tends to 0, and ${D_x \; g^{-\epsilon}} < 0 $.
If $D_x \; g^{-\epsilon} < -\epsilon$ on a set of infinite measure, then $\int^{x}_0 D_x , g^{-\epsilon} \quad dx $ (which differs from $g^{-\epsilon}$ by a constant) would diverge to negative infinity. So $D_x \; g^{-\epsilon} \ge -\epsilon$ outside a set of finite measure, from which your desired inequality follows immediately.
My questions
-
Can you cite or scan the question from the source? I am leery, because the claim appears false.
-
Is g(x) supposed to be convex?
Game plan
I shall construct, on top of $f(x)=x$, a function which occasionally jumps up a constant amount over littler and littler intervals. This means I can create a function with the growth rate of $x$, but with as much derivative growth as I want.
Counter Example
Let $h(x)$ be any nonnegative continuous function with the property that $h(0) = 1$ and $h \le 1$ everywhere, and $h = 0 $ outside the finite interval $[-0.25,0.25]$. Let $H(x)= h(x) + 2h(2(x-1)) + 4h(4(x-2)) + 8h((x-3)/8) + ...$
Then $H(x)$ converges to a continuous function, because the supports of each summand are disjoint. Observe that $H(n) = 2n$.
Let $g(x) = x + \int^0_x H(t) , dt$. Then certainly $g$ is $C^1$, increasing, and tends to infinity.
I constructed $h \le 1$, and $h = 0$. Thus $ \int^0_x ah(at) = \int^0_{x/a} h(u) du \le C$ for some constant C. Then $g(x) \le x + C(x+1)$, since at most $x+1$ of the rescaled $h's \neq 0$.
So $g^{1+\epsilon}$ grows at most polynomially. But we just constructed $g$ so that $g' \ge H$ has an exponentially growing SUBsequence!
1 comment thread