Comments on $g(x)\xrightarrow{x\to\infty}\infty$ Implies $g'(x)\leq g^{1+\varepsilon}(x)$
Parent
$g(x)\xrightarrow{x\to\infty}\infty$ Implies $g'(x)\leq g^{1+\varepsilon}(x)$
Recently in my ordinary differential equations class we were given the following problem:
Suppose $g:(0,\infty)\to\mathbb{R}$ is an increasing function of class $C^{1}$ such that $g(x)\xrightarrow{x\to\infty}\infty$. Show that for every $\varepsilon>0$ the inequality $g^{\prime}(x)\leq g^{1+\varepsilon}(x)$ upholds, outside a set of finite length.
I thought about using Grönwall's inequality , but i did not got any useful result.
Post
My questions
-
Can you cite or scan the question from the source? I am leery, because the claim appears false.
-
Is g(x) supposed to be convex?
Game plan
I shall construct, on top of $f(x)=x$, a function which occasionally jumps up a constant amount over littler and littler intervals. This means I can create a function with the growth rate of $x$, but with as much derivative growth as I want.
Counter Example
Let $h(x)$ be any nonnegative continuous function with the property that $h(0) = 1$ and $h \le 1$ everywhere, and $h = 0 $ outside the finite interval $[-0.25,0.25]$. Let $H(x)= h(x) + 2h(2(x-1)) + 4h(4(x-2)) + 8h((x-3)/8) + ...$
Then $H(x)$ converges to a continuous function, because the supports of each summand are disjoint. Observe that $H(n) = 2n$.
Let $g(x) = x + \int^0_x H(t) , dt$. Then certainly $g$ is $C^1$, increasing, and tends to infinity.
I constructed $h \le 1$, and $h = 0$. Thus $ \int^0_x ah(at) = \int^0_{x/a} h(u) du \le C$ for some constant C. Then $g(x) \le x + C(x+1)$, since at most $x+1$ of the rescaled $h's \neq 0$.
So $g^{1+\epsilon}$ grows at most polynomially. But we just constructed $g$ so that $g' \ge H$ has an exponentially growing SUBsequence!
1 comment thread