Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on Prove $e^x \ge x+1 \\\; \forall x \in \mathbb{R}$ using induction

Post

Prove $e^x \ge x+1 \\\; \forall x \in \mathbb{R}$ using induction

+3
−0

(How) can we prove $e^x \ge x+1 \; \forall x \in \mathbb{R}$ using induction (without using the derivative of $e^x$ at any stage)? Comments on my attempt are appreciated.

I stumbled across a very nice proof of $\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$ that uses the identity $e^x \ge x+1$. Briefly,

\begin{align} e^x \ge x+1 & \implies e^{-x} \ge 1-x \\ & \implies e^x \le \frac{1}{1-x} \\ & \implies x+1 \le e^x \le \frac{1}{1-x} \\ & \implies x \le e^x - 1 \le \frac{1}{1-x} - 1 \\ & \implies x \le e^x - 1 \le \frac{x}{1-x} \\ & \implies 1 \le \frac{e^x - 1}{x} \le \frac{1}{1-x} \\ & \implies \left(\lim_{x \to 0} 1 = 1\right) \le \lim_{x \to 0} \frac{e^x-1}{x} \le \left(\lim_{x \to 0} \frac{1}{1-x} = 1\right) \\ & \implies \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \\ & \implies \lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h} = e^x \\ & \implies \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \\ & \implies \frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x \end{align}

I now need to prove $e^x \ge x+1$ while ensuring that my argument is not circular. A lot of the proofs I came across use the derivative of $e^x$ which is not ideal. There were also references to Bernoulli's inequality which has some satisfactory proofs. Nonetheless, my first idea was induction, so I wonder if this is possible over the reals. I outline my attempt below, which I'm not very certain of.

For the base case $x = 0$,$$e^0 \ge 0 + 1 \implies \lim_{x\to0}e^x \ge \lim_{x\to 0} x + 1$$ Consider $\epsilon \ge 0 \implies e^{\epsilon} \ge 1$. We now induct as follows:
$\underline{x \in \mathbb{R}_{\ge 0}}$

$$e^{\epsilon} \cdot e^x \ge e^{\epsilon}(x+1) \implies \lim_{\epsilon \to 0} e^{x + \epsilon} \ge \lim_{\epsilon \to 0} e^{\epsilon}x + \lim_{\epsilon \to 0} e^{\epsilon} \ge x + \lim_{\epsilon\to 0} \epsilon + 1 \tag{1}$$ $\underline{x \in \mathbb{R}_{< 0}}$ $$\text{Replacing} \; \epsilon \; \text{with} \; -\epsilon, \; \text{we follow the same steps as in} \; (1)$$

History
Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

bernoulli via induction (1 comment)
bernoulli via induction
ziggurism‭ wrote over 1 year ago

Although Derek Elkins‭ is correct, that you cannot use mathematical induction to prove an identity for all real numbers, what you can do is prove Bernoulli's inequality for the natural numbers, using mathematical induction, which is straightforward. Then you can extend it to negative exponents, and rational exponents, and use a continuity argument to extend to real exponents.