Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#3: Post edited by user avatar Derek Elkins‭ · 2022-08-21T06:56:53Z (over 1 year ago)
Format implications so it not an unreadable blob of text. Correct minor typo/thinko.
Prove $e^x \ge x+1 \\\; \forall x \in \mathbb{R}$ using induction
  • > (How) can we prove $e^x \ge x+1 \\; \forall x \in \mathbb{R}$ using induction (without using the derivative of $e^x$ at any stage)? Comments on my attempt are appreciated.
  • I stumbled across a very nice proof of $\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$ that uses the identity $e^x \ge x+1$. Briefly,
  • > \begin{align}&e^x \ge x+1 \implies e^{-x} \le 1-x \implies e^x \le \frac{1}{1-x} \implies x+1 \le e^x \le \frac{1}{1-x} \\\\ \implies &x \le e^x - 1 \le \frac{1}{1-x} - 1 \implies x \le e^x - 1 \le \frac{x}{1-x} \implies 1 \le \frac{e^x - 1}{x} \le \frac{1}{1-x} \\\\ \implies &\left(\lim_{x \to 0} 1 = 1 ight) \le \lim_{x \to 0} \frac{e^x-1}{x} \le \left(\lim_{x \to 0} \frac{1}{1-x} = 1 ight) \implies \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \\\\ \implies &\lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h} = e^x \implies \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \implies \frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x
  • \end{align}
  • I now need to prove $e^x \ge x+1$ while ensuring that my argument is not circular. A lot of the proofs I came across use the derivative of $e^x$ which is not ideal. There were also references to [Bernoulli's inequality](https://en.wikipedia.org/wiki/Bernoulli%27s_inequality) which has some satisfactory proofs. Nonetheless, my first idea was induction, so I wonder if this is possible over the reals. I outline my attempt below, which I'm not very certain of.
  • > For the base case $x = 0$,$$e^0 \ge 0 + 1 \implies \lim_{x\to0}e^x \ge \lim_{x\to 0} x + 1$$
  • Consider $\epsilon \ge 0 \implies e^{\epsilon} \ge 1$. We now induct as follows:\
  • $\underline{x \in \mathbb{R}_{\ge 0}}$
  • >
  • >$$e^{\epsilon} \cdot e^x \ge e^{\epsilon}(x+1) \implies \lim_{\epsilon \to 0} e^{x + \epsilon} \ge \lim_{\epsilon \to 0} e^{\epsilon}x + \lim_{\epsilon \to 0} e^{\epsilon} \ge x + \lim_{\epsilon\to 0} \epsilon + 1 \tag{1}$$
  • $\underline{x \in \mathbb{R}_{< 0}}$
  • $$\text{Replacing} \\; \epsilon \\; \text{with} \\; -\epsilon, \\; \text{we follow the same steps as in} \\; (1)$$
  • > (How) can we prove $e^x \ge x+1 \\; \forall x \in \mathbb{R}$ using induction (without using the derivative of $e^x$ at any stage)? Comments on my attempt are appreciated.
  • I stumbled across a very nice proof of $\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$ that uses the identity $e^x \ge x+1$. Briefly,
  • > \begin{align}
  • e^x \ge x+1
  • & \implies e^{-x} \ge 1-x \\\\
  • & \implies e^x \le \frac{1}{1-x} \\\\
  • & \implies x+1 \le e^x \le \frac{1}{1-x} \\\\
  • & \implies x \le e^x - 1 \le \frac{1}{1-x} - 1 \\\\
  • & \implies x \le e^x - 1 \le \frac{x}{1-x} \\\\
  • & \implies 1 \le \frac{e^x - 1}{x} \le \frac{1}{1-x} \\\\
  • & \implies \left(\lim_{x \to 0} 1 = 1 ight) \le \lim_{x \to 0} \frac{e^x-1}{x} \le \left(\lim_{x \to 0} \frac{1}{1-x} = 1 ight) \\\\ & \implies \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \\\\
  • & \implies \lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h} = e^x \\\\
  • & \implies \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \\\\
  • & \implies \frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x
  • \end{align}
  • I now need to prove $e^x \ge x+1$ while ensuring that my argument is not circular. A lot of the proofs I came across use the derivative of $e^x$ which is not ideal. There were also references to [Bernoulli's inequality](https://en.wikipedia.org/wiki/Bernoulli%27s_inequality) which has some satisfactory proofs. Nonetheless, my first idea was induction, so I wonder if this is possible over the reals. I outline my attempt below, which I'm not very certain of.
  • > For the base case $x = 0$,$$e^0 \ge 0 + 1 \implies \lim_{x\to0}e^x \ge \lim_{x\to 0} x + 1$$
  • Consider $\epsilon \ge 0 \implies e^{\epsilon} \ge 1$. We now induct as follows:\
  • $\underline{x \in \mathbb{R}_{\ge 0}}$
  • >
  • >$$e^{\epsilon} \cdot e^x \ge e^{\epsilon}(x+1) \implies \lim_{\epsilon \to 0} e^{x + \epsilon} \ge \lim_{\epsilon \to 0} e^{\epsilon}x + \lim_{\epsilon \to 0} e^{\epsilon} \ge x + \lim_{\epsilon\to 0} \epsilon + 1 \tag{1}$$
  • $\underline{x \in \mathbb{R}_{< 0}}$
  • $$\text{Replacing} \\; \epsilon \\; \text{with} \\; -\epsilon, \\; \text{we follow the same steps as in} \\; (1)$$
#2: Post edited by user avatar Carefree Explorer‭ · 2022-08-20T20:14:57Z (over 1 year ago)
  • Prove $e^x \ge x+1 \\; \forall x \in \mathbb{R}$ using induction
  • Prove $e^x \ge x+1 \\\; \forall x \in \mathbb{R}$ using induction
#1: Initial revision by user avatar Carefree Explorer‭ · 2022-08-20T20:14:35Z (over 1 year ago)
Prove $e^x \ge x+1 \\; \forall x \in \mathbb{R}$ using induction
 > (How) can we prove $e^x \ge x+1 \\; \forall x \in \mathbb{R}$ using induction (without using the derivative of $e^x$ at any stage)? Comments on my attempt are appreciated.

I stumbled across a very nice proof of $\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x$ that uses the identity $e^x \ge x+1$. Briefly,

 > \begin{align}&e^x \ge x+1 \implies e^{-x} \le 1-x \implies e^x \le \frac{1}{1-x} \implies x+1 \le e^x \le \frac{1}{1-x} \\\\ \implies &x \le e^x - 1 \le \frac{1}{1-x} - 1 \implies x \le e^x - 1 \le \frac{x}{1-x} \implies 1 \le \frac{e^x - 1}{x} \le \frac{1}{1-x} \\\\ \implies &\left(\lim_{x \to 0} 1 = 1\right) \le \lim_{x \to 0} \frac{e^x-1}{x} \le \left(\lim_{x \to 0} \frac{1}{1-x} = 1\right) \implies \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \\\\ \implies &\lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h} = e^x \implies \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \implies \frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x
\end{align}

I now need to prove $e^x \ge x+1$ while ensuring that my argument is not circular. A lot of the proofs I came across use the derivative of $e^x$ which is not ideal. There were also references to [Bernoulli's inequality](https://en.wikipedia.org/wiki/Bernoulli%27s_inequality) which has some satisfactory proofs. Nonetheless, my first idea was induction, so I wonder if this is possible over the reals. I outline my attempt below, which I'm not very certain of.


 > For the base case $x = 0$,$$e^0 \ge 0 + 1 \implies \lim_{x\to0}e^x \ge \lim_{x\to 0} x + 1$$
Consider $\epsilon \ge 0 \implies e^{\epsilon} \ge 1$. We now induct as follows:\
$\underline{x \in \mathbb{R}_{\ge 0}}$
>
>$$e^{\epsilon} \cdot e^x \ge e^{\epsilon}(x+1) \implies \lim_{\epsilon \to 0} e^{x + \epsilon} \ge \lim_{\epsilon \to 0} e^{\epsilon}x + \lim_{\epsilon \to 0} e^{\epsilon} \ge x + \lim_{\epsilon\to 0} \epsilon + 1 \tag{1}$$
$\underline{x \in \mathbb{R}_{< 0}}$
$$\text{Replacing} \\; \epsilon \\; \text{with} \\; -\epsilon, \\; \text{we follow the same steps as in} \\; (1)$$