Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on How to determine area of square using Calculus in Cartesian coodinate?

Parent

How to determine area of square using Calculus in Cartesian coodinate?

+1
−2

I was studying determination of area in Calculus. So, I decided to calculate area of rectangle using Calculus.


Let, length of a line of a square is $5$. So, I decided to make an equation for that. I took $x^2+y^2=\sqrt{25}$. Firstly, it was looking perfect to me. Then, when I was calculating for $y=1$ then, I noticed I got $x=4,6$ (where 6 is wrong).

coordinate

I drew the above picture (Sorry! I don't have proper "picture" maker in system)..

We know $$\int_{-5}^{5}y\mathrm dx$$ $$=\int_{-5}^{5} \sqrt{\sqrt{25}-x^2}\mathrm dx$$

If I integrate it than, I get imaginary number and infinite number. So, I think I took the wrong equation. How would you determine area of square using Integration (when length of a line is $5$)?

Note : Use Cartesian Coordinate.

Ohh! Sorry. I wrote $x^2+y^2=\sqrt{25}$ but, when doing that in notepad I was doing using $x+y=\sqrt{25}$ then, I got $50$...

$$\int_{-5}^{5} \sqrt{25}-x \mathrm dx$$ $$[\sqrt{25}x]-\frac{x^2}{2}]_{-5}^5$$ $$\sqrt{25}(5)-\sqrt{25}(-5)-\frac{25}{2}+\frac{25}{2}$$ $$2\sqrt{25}(5)$$ $$50,-50$$

History
Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

$x^2+y^2=5$ is the equation of a circle (of radius $\sqrt5$) (2 comments)
Post
+1
−0

The correct equation for the square boundary you sketched is $$\left|x\right| + \left|y\right| = 5$$ where $\left|x\right|$ means the absolute value of $x$, that is, $$\left|x\right| = \begin{cases} x & \text{for $x\ge 0$}\\ -x & \text{for $x < 0$} \end{cases}$$ Now to calculate the area with calculus, the easiest way to do so is to first note that the square is composed of four congruent triangles corresponding to the sign choices of $x$ and $y$. Therefore you can calculate the area of one of those triangles and multiply the result by $4$.

The obvious choice is the triangle where $x$ and $y$ are both positive, because there you can simply omit the absolute value bars, so you get $x+y=5$ or solved for $y$, $$y = 5 - x$$ Since you are now only looking at the positive values of $x$, your integration goes only from $0$ to $5$, so the area of the triangle is $$A_\triangle = \int_0^5 (5-x) \,\mathrm dx = \frac{25}{2}$$ Therefore we get for the total area of the square $$A_\square = 4 A_\triangle = 50$$ which indeed is the correct area of the square.

Note that while your last calculation also gives the value $50$, this is a coincidence. What you actually calculated there is the area of the equilateral right triangle that sits above the $x$-axis with the right angle at the left side, and going up to $10$ on the left side. It is easy to see geometrically that this has the same area as the square (half of it is the upper half of the square, and the other half is congruent to the lower half of the square).

To see how the square has area $50$, the following image should help:

Depiction of square with illustration how to get the area

The square, drawn in blue, has corners $(0,5)$, $(5,0)$, $(0,-5)$ and $(-5,0)$. The sides are connecting those points, and are of course all of equal length, which I named $a$.

The length of this side can be obtained by noting that the triangle formed by the origin and the two end points of the square side is a right triangle, with the right angle at the origin, and therefore Pythagoras can be used. The two triangle sides at that right angle have both length $5$ (since they go from $(0,0)$ to either $(0,\pm 5)$. The triangle side opposite to the right angle is the side of the square whose length $a$ we want to determine, and Pythagoras tells us that $$a^2 = 5^2+5^2 = 50$$ Now the area of the square is, of course, $A_\square = a^2$, therefore inserting the above result gives $$A_\square = 50$$

Note that the right triangle is exactly the quarter-square whose area was calculated with the integral above. Another geometric way to determine the area therefore is to calculate the area of that right triangle by taking one of the sides going to the right angle as base line, and noting that the other one then is the height. Therefore the area of that triangle is $$A_\triangle = \frac12 b h = \frac12\cdot 5\cdot 5 = \frac{25}{2}$$ and then $$A_\square = 4A\triangle = 50$$

History
Why does this post require moderator attention?
You might want to add some details to your flag.

1 comment thread

But i know simple way that $5^2=25$. Area of square is $a^2$ that's the simple formula we know. But, ... (5 comments)
But i know simple way that $5^2=25$. Area of square is $a^2$ that's the simple formula we know. But, ...
deleted user wrote over 2 years ago

But i know simple way that $5^2=25$. Area of square is $a^2$ that's the simple formula we know. But, why i am getting 50 when calculating using integration. Since, we know reality is forever same.

celtschk‭ wrote over 2 years ago

But the side length of the sketched square is not $5$, but $\sqrt{50}$.

deleted user wrote over 2 years ago · edited over 2 years ago

celtschk‭ not at all, i said It's square not "rectangle". Length of every line is same...

celtschk‭ wrote over 2 years ago

Yes, it's a square, with side length (of each of its four sides) $\sqrt{50}$. I tried to add an explanation to the answer, but at the moment for some reason I can't edit it (I've posted a bug report on meta on this).

celtschk‭ wrote over 2 years ago

Please see the edit, I hope it clears things up.