Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »

Activity for Tim Pederick‭

Type On... Excerpt Status Date
Comment Post #288113 Even the mathematical part of the question is really about a legal principle—the “balance of probabilities”—much like [another of the asker’s questions](https://math.codidact.com/posts/288101). I doubt there are “official terms” (OP’s request) in mathematics, but there may be in law. To my underst...
(more)
12 months ago
Comment Post #288101 Agreed: this is about what facts a court can establish, not about the calculation of a probability. Mathematically, **yes**, Friend changed Ungrateful’s chance of winning the lottery from very low (the probability that *that* ticket was the winner, multiplied by the probability that Ungrateful would ...
(more)
12 months ago
Comment Post #288090 The scenario described is a game played with dice to introduce an element of chance. If that’s not a type of game you’re familiar with, it’s not going to be helpful. (I chose it because it let me stick with the idea of “avoiding injury”, while also having well-defined probabilities.) Rather than m...
(more)
12 months ago
Comment Post #288087 Of course it’s not *sufficient*. My point was only that the question lies somewhere in the intersection of maths and language. It raises some doubt (in contrast to simply saying “Not a math question”), and I chose to give OP the benefit of that doubt. Other parallels: ① Verizon’s [conflation of...
(more)
12 months ago
Comment Post #288087 I disagree. It strikes me as akin to meta-statements like $A\to B$ versus $\left(A\to B\right)\to C$. I think it would *also* be on topic as an English usage question (no need to impute learner status to OP), but that doesn’t invalidate its presence here.
(more)
12 months ago
Comment Post #288081 Yes, it does clarify. I’m now more certain that I was reading it correctly: what’s needed here is to draw a distinction between “winning twice” (= “winning Monday’s *and* Tuesday’s draws”) and “winning a second time” (= “winning Tuesday’s draw, given that you won Monday’s”). This is just one examp...
(more)
about 1 year ago
Comment Post #288080 ① Yes, it is impossible, and I believe that’s Peter’s point. It is intuitively obvious that winning zero times is **not** independent of winning once. So it makes sense that winning *twice* wouldn’t be independent either, or indeed that winning $n$ times isn’t independent of winning $m$ times. ② B...
(more)
about 1 year ago
Comment Post #286034 “In quaternion algebra, $1$ is not identified with the vector $(1,0,0)$.” I think I’m starting to get it. Or rather, I think I *understand* it, but I still don’t *get* it. My lack of formal quaternion education is probably betraying me here. Why doesn’t the real unit 1 correspond to the 4D vector $(1...
(more)
almost 2 years ago
Comment Post #286034 @#53398 “But where are you getting triplets in 2D?” From the trivial $(x,y)\mapsto (x,y,0)$. “…modulo sign (the negation is not orthogonal)…” Ah, see, I was counting the negations, so your three I would’ve called six. But I still don’t see how we get that many! In two dimensions, there’s one (pair...
(more)
almost 2 years ago
Comment Post #286034 ‘I was implying orthogonal when I said it produces 3….’ You’re still beyond me here. What three roots are they? I only count two new ones, plus the two that we had in 2D: $(0,\pm 1,0)$ and $(0,0,\pm 1)$. ‘…an "axial vector" and a "position vector".’ Ah, now we’re back on ground I know—or once knew...
(more)
about 2 years ago
Comment Post #286034 @#53398 Ah, I see my mistake now. I hadn’t even considered that the normal to a plane would no longer be unique in 4D. But just as there’s only one line orthogonal to a line in 2D, but infinitely many (a whole plane of them) in 3D, it makes sense that the same would happen to the normal(s) to a plane...
(more)
about 2 years ago
Comment Post #286034 @#53398 And to a couple of your specific points that I didn’t have room for in the above… “Moving to 3D immediately produces 3 square roots of -1.” Does it? I had thought it produced *infinitely many* roots lying on the circle $x=0,y^2+z^2=1$. And I worried that I’d glossed over that part too quic...
(more)
about 2 years ago
Comment Post #286034 Let me start by saying that I came at this as someone who learnt complex numbers “properly”, but is entirely self-taught in quaternions out of sheer amateur interest. So I’m far from being an expert, and intended simply to share with the asker a mental model that worked for me. With that proviso, ...
(more)
about 2 years ago
Comment Post #285723 Indeed, but as I read it, the author is saying it’s obvious *from the values of $m$ and $n$*, before ever calculating that the side length exceeds $\sqrt{16}$.
(more)
over 2 years ago