Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
![Reuleaux triangle 1](https://math.codidact.com/uploads/roa9d4qwq5uow07aqrc5o5rfzib2)
Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$.
It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
\[f(x)=\left\{\begin{array}{ll}
\sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
\sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
\end{array}\right.\]
The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis. Its volume is
\begin{align*}
V &=\int_0^1\pi\left(f(x)\right)^2\mathrm{d}x=\int_0^\frac{\sqrt{3}}{2}\pi\left(f(x)\right)^2\mathrm{d}x+\int_\frac{\sqrt{3}}{2}^1\pi\left(f(x)\right)^2\mathrm{d}x\\
&=\int_0^\frac{\sqrt{3}}{2}\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)^2\!\mathrm{d}x+\int_\frac{\sqrt{3}}{2}^1\pi\left(\sqrt{1-x^2}\right)^2\!\mathrm{d}x\\
&=V_1+V_2
\end{align*}
The second integral is
\[V_2=\int_\frac{\sqrt{3}}{2}^1\pi\left(1-x^2\right)\mathrm{d}x=\pi\left[x-{\textstyle\frac13}x^3\right]_\frac{\sqrt{3}}{2}^1=\pi\left({\textstyle\frac23-\frac{3\sqrt{3}}{8}}\right)\]
The first integral is
\[V_1=\int_0^\frac{\sqrt{3}}{2}\pi\left(-x^2+\sqrt{3}x+{\textstyle\frac14}-\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}+{\textstyle\frac14}\right)\mathrm{d}x\]
To find $\displaystyle\int\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}\,\mathrm{d}x$, let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$.
\[\int\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}\,\mathrm{d}x=\int\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}\,\mathrm{d}x=\int\sqrt{1-u^2}\,\mathrm{d}u\]
To find $\int\sqrt{1-x^2}\,\mathrm{d}x$, use integration by parts.
$\int f(x)\frac{\mathrm{d}g}{\mathrm{d}x}\,\mathrm{d}x=f(x)g(x)-\int g(x)\frac{\mathrm{d}f}{\mathrm{d}x}\,\mathrm{d}x$
Choose $f(x)=\sqrt{1-x^2}$ and $\frac{\mathrm{d}g}{\mathrm{d}x}=1$. Thus, $\frac{\mathrm{d}f}{\mathrm{d}x}=\frac{-x}{\sqrt{1-x^2}}$ and $g(x)=x$.
\begin{align*}
\int\sqrt{1-x^2}(1)\,\mathrm{d}x &=\sqrt{1-x^2}(x)-\int(x)\frac{-x}{\sqrt{1-x^2}}\,\mathrm{d}x\\
\int\sqrt{1-x^2}\,\mathrm{d}x &=x\sqrt{1-x^2}-\int\frac{-x^2}{\sqrt{1-x^2}}\,\mathrm{d}x\\
&=x\sqrt{1-x^2}-\int\frac{1-x^2}{\sqrt{1-x^2}}\,\mathrm{d}x+\int\frac{1}{\sqrt{1-x^2}}\,\mathrm{d}x\\
&=x\sqrt{1-x^2}-\int\sqrt{1-x^2}\mathrm{d}x+\arcsin(x)+C_1
\end{align*}
\begin{align*}
2\int\sqrt{1-x^2}\,\mathrm{d}x &=x\sqrt{1-x^2}+\arcsin(x)+C_1\\
\int\sqrt{1-x^2}\,\mathrm{d}x &={\textstyle\frac12}x\sqrt{1-x^2}+{\textstyle\frac12}\arcsin(x)+C
\end{align*}
Thus,
\[\int\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}\mathrm{d}x=\int\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}\mathrm{d}x\]
\[=\int\sqrt{1-u^2}\mathrm{d}u={\textstyle\frac12}u\sqrt{1-u^2}+{\textstyle\frac12}\arcsin(u)+C\]
\[={\textstyle\frac12}\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}+{\textstyle\frac12}\arcsin\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)+C\]
Now,
\begin{align*}
V_1 &=\int_0^\frac{\sqrt{3}}{2}\pi\left(-x^2+\sqrt{3}x+{\textstyle\frac14}-\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}+{\textstyle\frac14}\right)\mathrm{d}x\\
&=\pi\left[-{\textstyle\frac13}x^3+{\textstyle\frac{\sqrt{3}}{2}}x^2+{\textstyle\frac14}x-\left({\textstyle\frac12}\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}\right.\right.\\
&\left.+{\textstyle\frac12}\arcsin\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)\Bigg)+{\textstyle\frac14}x\right]_0^\frac{\sqrt{3}}{2}=\pi\left({\textstyle\frac{\sqrt{3}}{2}}-\left({\textstyle\frac{\sqrt{3}}{8}}+{\textstyle\frac{\pi}{6}}\right)\right)
\end{align*}
Finally, $V=V_1+V_2=\pi\left(\frac{3\sqrt{3}}{8}-\frac{\pi}{6}\right)+\pi\left(\frac23-\frac{3\sqrt{3}}{8}\right)=\pi\left(\frac23-\frac{\pi}{6}\right)$.
For a width $w$, the volume is $\color{lightgray}\boxed{\color{black}{\textstyle\pi\left(\frac23-\frac{\pi}{6}\right)w^3}}$.