Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Volume enclosed by the surface of revolution of a Reuleaux triangle

+1
−0

A Reuleaux triangle is "a curve of constant width constructed by drawing arcs from each polygon vertex of an equilateral triangle between the other two vertices."

What is the volume enclosed by the surface of revolution of a Reuleaux triangle (with width w) through one of its symmetry axes?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

1 answer

+0
−0

Shown below is a Reuleaux triangle with the x-axis as one of its symmetry axes and the origin as one of its corners.

Reuleaux triangle 1

Let points A, B, and C be the corners of the Reuleaux triangle with width w=1 shown below. These are also the corners of the inscribed equilateral triangle whose side length is w=1. It can be seen that A=(0,0), B=(32,12), and C=(32,12).

Reuleaux triangle 2

A circle centered at (h,k) has the equation (xh)2+(yk)2=r2. From this, we find the equation of the curve above the x-axis

f(x)={x2+3x+1412,0x321x2,32x1

The solid is bounded by the planes x=0 and x=1 and the curve y=f(x) revolved around the x-axis. Its volume is

V=01π(f(x))2dx=032π(f(x))2dx+321π(f(x))2dx=032π(x2+3x+1412)2dx+321π(1x2)2dx=V1+V2

The second integral is V2=321π(1x2)dx=π[x13x3]321=π(23338)

The first integral is V1=032π(x2+3x+14x2+3x+14+14)dx

To find x2+3x+14dx, let u=x32. Thus, du=dx. x2+3x+14dx=1(x32)2dx=1u2du

To find 1x2dx, use integration by parts.

f(x)dgdxdx=f(x)g(x)g(x)dfdxdx

Choose f(x)=1x2 and dgdx=1. Thus, dfdx=x1x2 and g(x)=x.

1x2(1)dx=1x2(x)(x)x1x2dx1x2dx=x1x2x21x2dx=x1x21x21x2dx+11x2dx=x1x21x2dx+arcsin(x)+C121x2dx=x1x2+arcsin(x)+C11x2dx=12x1x2+12arcsin(x)+C

Thus, x2+3x+14dx=1(x32)2dx =1u2du=12u1u2+12arcsin(u)+C =12(x32)1(x32)2+12arcsin(x32)+C Now,

V1=032π(x2+3x+14x2+3x+14+14)dx=π[13x3+32x2+14x(12(x32)1(x32)2+12arcsin(x32))+14x]032=π(32(38+π6))

Finally, V=V1+V2=π(338π6)+π(23338)=π(23π6).

For a width w, the volume is π(23π6)w3.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

1 comment thread

My answer is consistent with that given by another source. (1 comment)

Sign up to answer this question »