Post History
#2: Post edited
- The endpoint fails to be an "interior" point only when the space $\left[0,L\right[$ is embedded in a larger space. If a function is defined on a certain domain, one may take the value of the derivative of the function $f$ at a point $a$ in the domain to be
- $$
f'(a) = \lim_{x\,\to\,a \atop x\,\in\,\text{domain}} \frac{f(x)-f(a)}{x-a}.- $$
- The endpoint fails to be an "interior" point only when the space $\left[0,L\right[$ is embedded in a larger space. If a function is defined on a certain domain, one may take the value of the derivative of the function $f$ at a point $a$ in the domain to be
- $$
- f'(a) = \lim_{x~\to~a \atop x~\in~\text{domain}} \frac{f(x)-f(a)}{x-a}.
- $$
#1: Initial revision
The endpoint fails to be an "interior" point only when the space $\left[0,L\right[$ is embedded in a larger space. If a function is defined on a certain domain, one may take the value of the derivative of the function $f$ at a point $a$ in the domain to be $$ f'(a) = \lim_{x\,\to\,a \atop x\,\in\,\text{domain}} \frac{f(x)-f(a)}{x-a}. $$