Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar Derek Elkins‭ · 2022-09-14T23:15:02Z (over 1 year ago)
You basically have it.

I'll give an overly detailed rendition of an informal proof below.

As you state, the assumption is that $p(p+1776) = k^2$ for some natural number $k$ with $p$ a prime. We want to show that $p\mid p + 1776$, or, equivalently, $p + 1776 = pm$ for some natural $m$.

**Proof**: Via the Fundamental Theorem of Arithmetic, $k$ has some unique prime factorization so $k = \prod_i {p_i}^{n_i}$ where all the $p_i$ are prime. $k^2$ is then clearly $\prod_i ({p_i}^{n_i})^2$. Since $p \mid p(p + 1776)$, we have $p \mid k^2$ so there's some $i$ such that $p = p_i$. This is because for a prime $p$, $p \mid rs$ if and only if $p \mid r$ or $p \mid s$, and $p \mid q$ for a prime $q$ if and only if $q = p$. In symbols we have $$p \mid \prod_i {p_i}^{2n_i} \iff \bigvee_i p \mid {p_i}^{2n_i} \iff \bigvee_i p \mid p_i \iff \exists i. p = p_i$$ where $\iff$ is "if and only if" and $\bigvee$ is a variadic disjunction. Choose $j$ such that $p = p_j$.

We thus have $p(p+1776) = k^2 = p^2 m$ where $m = p^{2n_i - 2} \prod_{i \neq j} {p_i}^{2n_i}$, so by cancelling $p$ from both sides we have $p + 1776 = p m$ which is exactly what it means for $p$ to divide $p + 1776$. $\square$

The Fundamental Theorem of Arithmetic is likely overkill for this problem, so it may be interesting to find a proof that doesn't rely on it.