Proving that $p\mid (p+1776)$ if $p$ is a prime and $p(p+1776)$ is a perfect square
Problem: Suppose $p$ is a prime number and $p(p+1776)$ is a perfect square. Prove that $p\mid (p+1776)$.
From the assumption of the problem, $p(p+1776)=k^2$ for some positive integer $k$. This does not help much. Intuitively, one can write $p(p+1776)=p^2m^2$ for some integer $m$ due to the fundamental theorem of arithmetic: in order to have a complete square, the factor $p$ should appear twice. One can then easily conclude that $p\mid (p+1776)$ since $p+1776=pm^2$. But I don't find a formal way to show this intuition.
2 answers
You are accessing this answer with a direct link, so it's being shown above all other answers regardless of its score. You can return to the normal view.
You basically have it.
I'll give an overly detailed rendition of an informal proof below.
As you state, the assumption is that $p(p+1776) = k^2$ for some natural number $k$ with $p$ a prime. We want to show that $p\mid p + 1776$, or, equivalently, $p + 1776 = pm$ for some natural $m$.
Proof: Via the Fundamental Theorem of Arithmetic, $k$ has some unique prime factorization so $k = \prod_i {p_i}^{n_i}$ where all the $p_i$ are prime. $k^2$ is then clearly $\prod_i ({p_i}^{n_i})^2$. Since $p \mid p(p + 1776)$, we have $p \mid k^2$ so there's some $i$ such that $p = p_i$. This is because for a prime $p$, $p \mid rs$ if and only if $p \mid r$ or $p \mid s$, and $p \mid q$ for a prime $q$ if and only if $q = p$. In symbols we have $$p \mid \prod_i {p_i}^{2n_i} \iff \bigvee_i p \mid {p_i}^{2n_i} \iff \bigvee_i p \mid p_i \iff \exists i. p = p_i$$ where $\iff$ is "if and only if" and $\bigvee$ is a variadic disjunction. Choose $j$ such that $p = p_j$.
We thus have $p(p+1776) = k^2 = p^2 m$ where $m = p^{2n_i - 2} \prod_{i \neq j} {p_i}^{2n_i}$, so by cancelling $p$ from both sides we have $p + 1776 = p m$ which is exactly what it means for $p$ to divide $p + 1776$. $\square$
The Fundamental Theorem of Arithmetic is likely overkill for this problem, so it may be interesting to find a proof that doesn't rely on it.
1 comment thread
The following users marked this post as Works for me:
User | Comment | Date |
---|---|---|
msh210 | (no comment) | Sep 16, 2022 at 03:22 |
Inspired by Derek Elkins's excellent answer, I have the following proof.
By the assumption, we have $p(p+1776)=k^2$ for some integer $k$ and thus $p\mid k^2$. Then, Euclid's lemma implies that $p\mid k$. It follows that $k=mp$ for some integer $m$ and thus $(mp)^2=k^2=p(p+1776)$, which implies by cancellation that $m^2p=p+1776$. The proof is now complete.
Note: Euclid's lemma is also used in the proof of the fundamental theorem of arithmetic.
0 comment threads