### Communities

tag:snake search within a tag
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
created:<1w created < 1 week ago
post_type:xxxx type of post
Q&A

# How does $P(C > D \mid C = 2) \neq P(C > D \mid C \neq 2)$ prove that B > C depends on C > D?

+0
−0

I grok that $\color{limegreen}{P(C > D \mid C = 2) = P(D = 1 \mid C = 6) = 1/2}$, and $\color{red}{P(C > D \mid C \neq 2) = P(C > D \mid C = 6) = 1}$. But I don't grok the last sentence in the quotation below, colored in blue. How do these two probabilities prove that B > C DEPENDS ON C > D?

1. Consider four nonstandard dice (the Efron dice), whose sides are labeled as follows (the 6 sides on each die are equally likely).

A: 4; 4; 4; 4; 0; 0
B: 3; 3; 3; 3; 3; 3
C: 6; 6; 2; 2; 2; 2
D: 5; 5; 5; 1; 1; 1

These four dice are each rolled once. Let A be the result for die A, B be the result for die B, etc.

(a) Find P(A > B), P(B > C), P(C > D), and P(D > A).

(b) Is the event A > B independent of the event B > C? Is the event B > C independent of the event C > D? Explain.

## Solution: Blitzstein, Introduction to Probability (2019 2 edn), Ch 2, Exercise 30, p 88. pp 13-14 in the publicly downloadable PDF of curbed solutions.

Why does this post require moderator attention?
Why should this post be closed? 