Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs

Dashboard
Notifications
Mark all as read
Q&A

How does counting E twice explain the discrepancy between the third between C and E, third between E and G v. fifth between C and G?

+0
−2

I still don't grasp the "source of the discrepancy". "the E got counted twice when we went C,D,E and then E,F,G, but only got counted once when we went C,D,E,F,G." — So what? How does this expound the discrepancy?

Impaled on a Fencepost |

The music theorists of the Middle Ages committed a fencepost error that’s too entrenched to dig up now. Consider the chord made of the notes C, E, and G (a C major triad). If music theory nomenclature for intervals made sense, the distance from C up to E plus the distance from E up to G would equal the distance from C up to G. And that’s true if you measure the intervals by counting upward steps. The problem comes when you describe intervals with what I suppose might be termed “ordinal nomenclature”: going from C to E is called going up by a third (because you count 1,2,3 when you play C,D,E) and going from E to G is called going up by a third for the same reason, but going from C to G is called going up by a fifth (because you count 1,2,3,4,5 as you play C,D,E,F,G).

The source of the discrepancy should be clear: the E got counted twice when we went C,D,E and then E,F,G, but only got counted once when we went C,D,E,F,G. So in music theory, when you stack a third on top of a third, you get a fifth. We musicians are stuck with nomenclature that essentially makes us say “3+3=5” so many times that we eventually stop noticing we’re saying it. (Of course, saying “a third plus a third is a fifth” is confusing on a different level, since it sounds like “1/3 + 1/3 = 1/5”. But I digress.)

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

Post Feedback (1 comment)

1 answer

+0
−0

The discrepancy comes from the way musical intervals are named. Image alt text The names are derived from the number of "fenceposts" including the first one, where as the corresponding length of the fence is one unit shorter.

The third+third=fifth equation is thus not $$3+3=5$$ but $$(3-1) + (3-1) = (5-1)$$

The E is counted double in the naïve addition $3+3=5$ because it is counted as the end of one interval and the start of the next interval.

Image alt text

Why does this post require moderator attention?
You might want to add some details to your flag.

0 comment threads

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!