Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs

Dashboard
Notifications
Mark all as read
Q&A

If a 2nd test's independent from the 1st test, then why does $\frac{0.95}{0.05}$ figure twice in $\frac{P(D|T_1)}{P(D^C|T_1)}\frac{P(T_2|D,T_1)}{P(T_2|D^C,T_1)}$?

+0
−2

The problem statement postulates that "The new test is independent of the original test (given his disease status)". So where did the two $\frac{0.95}{ 0.05}$, that I underlined in red and purple, stem from?

Example 2.6.1 (Testing for a rare disease, continued).

Fred, who tested positive for conditionitis in Example 2.3.9, decides to get tested a second time. The new test is independent of the original test (given his disease status) and has the same sensitivity and specificity. Unfortunately for Fred, he tests positive a second time. Find the probability that Fred has the disease, given the evidence, in two ways: in one step, conditioning on both test results simultaneously, and in two steps, first updating the probabilities based on the first test result, and then updating again based on the second test result.

Image alt text

Note that with a second positive test result, the probability that Fred has the disease jumps from 0.16 to 0.78, making us much more condent that Fred is actually afflicted with conditionitis. The moral of the story is that getting a second opinion is a good idea! □

Blitzstein. Introduction to Probability (2019 2 ed). pp 67-68.

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

0 answers

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!

Like what we're doing? Support us! Donate