Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics

Dashboard
Notifications
Mark all as read
Q&A

Does this generalization of path-connectedness also cover general connectedness?

+5
−0

I've got the following idea to generalise path-connectedness:

Given a topological space $P$ and a subspace $S$, a space $X$ is $(P,S)$-connected if every continuous function $f:S\to X$ can be extended to a continuous function $g:P\to X$.

The usual path-connectedness is obtained using $P=[0,1]$ with the usual topology and $S=\{0,1\}$. Since every function $f:\{0,1\}\to X$ is continuous, $f$ just picks two arbitrary points, and then $g$ is a path between those points.

Using the closed unit disc as $P$ and the unit circle as $S$ one also obtains whether all path-connected components are simply connected.

Now I wonder if there is also a choice of $P$ and $S$ that recovers general connectedness, that is the nonexistence of clopen sets other than the empty set and the full space.

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comments

0 answers

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!