Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#2: Post edited by user avatar ronno‭ · 2024-07-31T02:24:19Z (6 months ago)
  • This is not possible. Suppose there is such a $(P, S)$. Considering continuous maps to $\{0, 1\}$, there must be a clopen set $C \subset S$ such that there is no clopen $C' \subset P$ with $C = C' \cap S$.
  • Now let $\kappa < \lambda$ be infinite cardinalities bigger than $|P|$ and consider the co-$\kappa$ topology on a set $X$ of size $\lambda$. Then $X$ is connected but subsets of size $\le \kappa$ are discrete. Now consider $x_1
  • e x_2 \in X$ and the map $f : S \to X$ given by $f(C) = x_1$, $f(S \setminus C) = x_2$. This has no extension $g : P \to X$ since $x_1$ would be clopen in $f(P)$ and $C' = f^{-1}(x_1)$ would satisfy $C' \cap S = C$.
  • In short, $(P, S)$-connectedness can only detect "connectedness of size $\le |P|$".
  • This is not possible. Suppose there is such a $(P, S)$. Considering continuous maps to $\{0, 1\}$, there must be a clopen set $C \subset S$ such that there is no clopen $D \subset P$ with $C = D \cap S$.
  • Now let $\kappa < \lambda$ be infinite cardinalities bigger than $|P|$ and consider the co-$\kappa$ topology on a set $X$ of size $\lambda$. Then $X$ is connected but subsets of size $\le \kappa$ are discrete. Now consider $x_1
  • e x_2 \in X$ and the continuous map $f : S \to X$ given by $f(C) = x_1$, $f(S \setminus C) = x_2$. This has no continuous extension $g : P \to X$ since $x_1$ would be clopen in $g(P)$ and $D = g^{-1}(x_1)$ would satisfy $D \cap S = C$.
  • In short, $(P, S)$-connectedness can at best detect "connectedness at size $\le |P|$".
#1: Initial revision by user avatar ronno‭ · 2023-05-04T13:28:00Z (over 1 year ago)
This is not possible. Suppose there is such a $(P, S)$. Considering continuous maps to $\{0, 1\}$, there must be a clopen set $C \subset S$ such that there is no clopen $C' \subset P$ with $C = C' \cap S$.

Now let $\kappa < \lambda$ be infinite cardinalities bigger than $|P|$ and consider the co-$\kappa$ topology on a set $X$ of size $\lambda$. Then $X$ is connected but subsets of size $\le \kappa$ are discrete. Now consider $x_1 \ne x_2 \in X$ and the map $f : S \to X$ given by $f(C) = x_1$, $f(S \setminus C) = x_2$. This has no extension $g : P \to X$ since $x_1$ would be clopen in $f(P)$ and $C' = f^{-1}(x_1)$ would satisfy $C' \cap S = C$.

In short, $(P, S)$-connectedness can only detect "connectedness of size $\le |P|$".