Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on Complex functions and inner product $\langle \frac{\partial f}{\partial z} , g\rangle $

Post

Complex functions and inner product $\langle \frac{\partial f}{\partial z} , g\rangle $

+1
−0

I'm working through this academic paper: Stability of the Solutions of Differential Equations whose author is Bernard Beauzamy. A link to paper. In the academic paper, it works with the norm \begin{equation*} \left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2} \end{equation*} for analytic polynomials and the scalar product associated is \begin{equation*} \langle f,g\rangle= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi} \end{equation*} The lemma that I'm trying to check says the following:

For any $f$, $g$ in $\mathcal{P}_2$ \begin{equation*} \left\langle \frac{\partial f}{\partial z} , g\right\rangle = \langle f, zg \rangle \qquad \langle zf,g \rangle = \left\langle f, \frac{\partial g}{\partial z} \right\rangle \end{equation*} the functions $f$ and $g$ are given by \begin{equation*} f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j. \end{equation*} The derivative of $f$ with respect to $z$ is \begin{equation*} \frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}. \end{equation*} so the scalar product is \begin{align*} \left\langle \frac{\partial f}{\partial z}, g \right\rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1}\right) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k\right)} r \, dr \, \frac{d\theta}{\pi} \\ &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \, dr \, \frac{d\theta}{\pi} \\ &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}. \end{align*}

\begin{equation*} \int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases} 1 & \text{if } j = k+1, \\\\ 0 & \text{if } j \neq k+1. \end{cases} \end{equation*}

Hence \begin{align*} \left\langle \frac{\partial f}{\partial z}, g \right\rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \, dr \\ &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr. \end{align*}

The other scalar product is \begin{align*} \langle f, zg \rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j\right) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta}\right)} r \, dr \, \frac{d\theta}{\pi} \\ &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}. \end{align*}

Again, integrating over $\theta$ and $j=k+1$ \begin{align*} \langle f, zg \rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \, dr \\ &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr. \end{align*}

\begin{align*} \langle \frac{\partial f}{\partial z}, g \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\\\ \langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr. \end{align*}

These are not equal due to the factor $(k+1)$ present in $\left\langle \frac{\partial f}{\partial z}, g \right\rangle$. So I don't know where the error is.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

2 comment threads

No the complex conjugation is correct in each inner product used. Any advice on how to get it? You ca... (1 comment)
Are you sure you didn't miss a complex conjugation in the inner product formula? (1 comment)
No the complex conjugation is correct in each inner product used. Any advice on how to get it? You ca...
Richard‭ wrote 5 months ago

No the complex conjugation is correct in each inner product used. Any advice on how to get it? You can read the paper directly, I have left the link