Post History
#2: Post edited
Complex functions and inner product $\langle \frac{\partial f}{\partial z} , g\rangle $
I'm working through this academic paper : stability of the soljutions of differential equations whose author is Bernard Beauzamy. [A link to paper](https://typeset.io/pdf/stability-of-the-solutions-of-differential-equations-2byjzvdtk5.pdf)In the academic paper, it work with the next norm- \begin{equation*}
- \left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2}
- \end{equation*}
- for analytic polynomials
- and the scalar product associated is
- \begin{equation*}
<f,g>= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi}- \end{equation*}
The lemma that i'm trying to check say the followingFor any f,g and $\mathcal{P}_2$- \begin{equation*}
\langle \frac{\partial f}{\partial z} , g angle =\langle f, zg angle \qquad \langle zf,g angle =\langle f, \frac{\partial g}{\partial z} angle- \end{equation*}
the functions f and g are given by- \begin{equation*}
- f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j.
- \end{equation*}
The derivative of f with respect to z is- \begin{equation*}
- \frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}.
- \end{equation*}
- so the scalar product is
- \begin{align*}
\langle \frac{\partial f}{\partial z}, g angle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1} ight) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k ight)} r \, dr \, \frac{d\theta}{\pi} \\&= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \, dr \, \frac{d\theta}{\pi} \\&= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}.- \end{align*}
- \begin{equation*}
- \int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases}
1 & \text{if } j = k+1, \\- 0 & \text{if } j \neq k+1.
- \end{cases}
- \end{equation*}
- Hence
- \begin{align*}
\langle \frac{\partial f}{\partial z}, g angle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \, dr \\- &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
- \end{align*}
The other scalar product is- \begin{align*}
\langle f, zg angle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j ight) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta} ight)} r \, dr \, \frac{d\theta}{\pi} \\&= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}.- \end{align*}
Again, integrating over $ \theta $ and j=k+1- \begin{align*}
\langle f, zg angle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \, dr \\- &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
- \end{align*}
- \begin{align*}
\langle \frac{\partial f}{\partial z}, g angle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\- \langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
- \end{align*}
These are not equal due to the factor (k+1) present in $\langle \frac{\partial f}{\partial z}, g angle $. So i don't know where is the fail.
- I'm working through this academic paper: *Stability of the Solutions of Differential Equations* whose author is Bernard Beauzamy. [A link to paper](https://typeset.io/pdf/stability-of-the-solutions-of-differential-equations-2byjzvdtk5.pdf).
- In the academic paper, it works with the norm
- \begin{equation*}
- \left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2}
- \end{equation*}
- for analytic polynomials
- and the scalar product associated is
- \begin{equation*}
- \langle f,g\rangle= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi}
- \end{equation*}
- The lemma that I'm trying to check says the following:
- For any $f$, $g$ in $\mathcal{P}_2$
- \begin{equation*}
- \left\langle \frac{\partial f}{\partial z} , g ight\rangle = \langle f, zg angle \qquad \langle zf,g angle = \left\langle f, \frac{\partial g}{\partial z} ight\rangle
- \end{equation*}
- the functions $f$ and $g$ are given by
- \begin{equation*}
- f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j.
- \end{equation*}
- The derivative of $f$ with respect to $z$ is
- \begin{equation*}
- \frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}.
- \end{equation*}
- so the scalar product is
- \begin{align*}
- \left\langle \frac{\partial f}{\partial z}, g ight\rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1} ight) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k ight)} r \\, dr \\, \frac{d\theta}{\pi} \\\\
- &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \\, dr \\, \frac{d\theta}{\pi} \\\\
- &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \\, dr \\, \frac{d\theta}{\pi}.
- \end{align*}
- \begin{equation*}
- \int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases}
- 1 & \text{if } j = k+1, \\\\
- 0 & \text{if } j \neq k+1.
- \end{cases}
- \end{equation*}
- Hence
- \begin{align*}
- \left\langle \frac{\partial f}{\partial z}, g ight\rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \\, dr \\\\
- &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
- \end{align*}
- The other scalar product is
- \begin{align*}
- \langle f, zg angle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j ight) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta} ight)} r \\, dr \\, \frac{d\theta}{\pi} \\\\
- &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \\, dr \\, \frac{d\theta}{\pi}.
- \end{align*}
- Again, integrating over $\theta$ and $j=k+1$
- \begin{align*}
- \langle f, zg angle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \\, dr \\\\
- &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
- \end{align*}
- \begin{align*}
- \langle \frac{\partial f}{\partial z}, g angle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\\\
- \langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
- \end{align*}
- These are not equal due to the factor $(k+1)$ present in $\left\langle \frac{\partial f}{\partial z}, g ight\rangle$. So I don't know where the error is.
#1: Initial revision
Complex functions and inner product $\langle \frac{\partial f}{\partial z} , g\rangle $
I'm working through this academic paper : stability of the soljutions of differential equations whose author is Bernard Beauzamy. [A link to paper](https://typeset.io/pdf/stability-of-the-solutions-of-differential-equations-2byjzvdtk5.pdf) In the academic paper, it work with the next norm \begin{equation*} \left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2} \end{equation*} for analytic polynomials and the scalar product associated is \begin{equation*} <f,g>= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi} \end{equation*} The lemma that i'm trying to check say the following For any f,g and $\mathcal{P}_2$ \begin{equation*} \langle \frac{\partial f}{\partial z} , g\rangle =\langle f, zg \rangle \qquad \langle zf,g \rangle =\langle f, \frac{\partial g}{\partial z} \rangle \end{equation*} the functions f and g are given by \begin{equation*} f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j. \end{equation*} The derivative of f with respect to z is \begin{equation*} \frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}. \end{equation*} so the scalar product is \begin{align*} \langle \frac{\partial f}{\partial z}, g \rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1}\right) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k\right)} r \, dr \, \frac{d\theta}{\pi} \\ &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \, dr \, \frac{d\theta}{\pi} \\ &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}. \end{align*} \begin{equation*} \int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases} 1 & \text{if } j = k+1, \\ 0 & \text{if } j \neq k+1. \end{cases} \end{equation*} Hence \begin{align*} \langle \frac{\partial f}{\partial z}, g \rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \, dr \\ &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr. \end{align*} The other scalar product is \begin{align*} \langle f, zg \rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j\right) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta}\right)} r \, dr \, \frac{d\theta}{\pi} \\ &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}. \end{align*} Again, integrating over $ \theta $ and j=k+1 \begin{align*} \langle f, zg \rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \, dr \\ &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr. \end{align*} \begin{align*} \langle \frac{\partial f}{\partial z}, g \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\ \langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr. \end{align*} These are not equal due to the factor (k+1) present in $\langle \frac{\partial f}{\partial z}, g \rangle $. So i don't know where is the fail.