Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#2: Post edited by user avatar Derek Elkins‭ · 2024-08-11T08:43:29Z (2 months ago)
Formatting and minor typo fixes and grammar tweaks. Backslashes sometimes need to be escaped leading to things like \\\\ for \\.
Complex functions and inner product $\langle \frac{\partial f}{\partial z} , g\rangle $
  • I'm working through this academic paper : stability of the soljutions of differential equations whose author is Bernard Beauzamy. [A link to paper](https://typeset.io/pdf/stability-of-the-solutions-of-differential-equations-2byjzvdtk5.pdf)
  • In the academic paper, it work with the next norm
  • \begin{equation*}
  • \left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2}
  • \end{equation*}
  • for analytic polynomials
  • and the scalar product associated is
  • \begin{equation*}
  • <f,g>= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi}
  • \end{equation*}
  • The lemma that i'm trying to check say the following
  • For any f,g and $\mathcal{P}_2$
  • \begin{equation*}
  • \langle \frac{\partial f}{\partial z} , g angle =\langle f, zg angle \qquad \langle zf,g angle =\langle f, \frac{\partial g}{\partial z} angle
  • \end{equation*}
  • the functions f and g are given by
  • \begin{equation*}
  • f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j.
  • \end{equation*}
  • The derivative of f with respect to z is
  • \begin{equation*}
  • \frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}.
  • \end{equation*}
  • so the scalar product is
  • \begin{align*}
  • \langle \frac{\partial f}{\partial z}, g angle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1} ight) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k ight)} r \, dr \, \frac{d\theta}{\pi} \\
  • &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \, dr \, \frac{d\theta}{\pi} \\
  • &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}.
  • \end{align*}
  • \begin{equation*}
  • \int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases}
  • 1 & \text{if } j = k+1, \\
  • 0 & \text{if } j \neq k+1.
  • \end{cases}
  • \end{equation*}
  • Hence
  • \begin{align*}
  • \langle \frac{\partial f}{\partial z}, g angle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \, dr \\
  • &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
  • \end{align*}
  • The other scalar product is
  • \begin{align*}
  • \langle f, zg angle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j ight) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta} ight)} r \, dr \, \frac{d\theta}{\pi} \\
  • &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}.
  • \end{align*}
  • Again, integrating over $ \theta $ and j=k+1
  • \begin{align*}
  • \langle f, zg angle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \, dr \\
  • &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
  • \end{align*}
  • \begin{align*}
  • \langle \frac{\partial f}{\partial z}, g angle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\
  • \langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
  • \end{align*}
  • These are not equal due to the factor (k+1) present in $\langle \frac{\partial f}{\partial z}, g angle $. So i don't know where is the fail.
  • I'm working through this academic paper: *Stability of the Solutions of Differential Equations* whose author is Bernard Beauzamy. [A link to paper](https://typeset.io/pdf/stability-of-the-solutions-of-differential-equations-2byjzvdtk5.pdf).
  • In the academic paper, it works with the norm
  • \begin{equation*}
  • \left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2}
  • \end{equation*}
  • for analytic polynomials
  • and the scalar product associated is
  • \begin{equation*}
  • \langle f,g\rangle= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi}
  • \end{equation*}
  • The lemma that I'm trying to check says the following:
  • For any $f$, $g$ in $\mathcal{P}_2$
  • \begin{equation*}
  • \left\langle \frac{\partial f}{\partial z} , g ight\rangle = \langle f, zg angle \qquad \langle zf,g angle = \left\langle f, \frac{\partial g}{\partial z} ight\rangle
  • \end{equation*}
  • the functions $f$ and $g$ are given by
  • \begin{equation*}
  • f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j.
  • \end{equation*}
  • The derivative of $f$ with respect to $z$ is
  • \begin{equation*}
  • \frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}.
  • \end{equation*}
  • so the scalar product is
  • \begin{align*}
  • \left\langle \frac{\partial f}{\partial z}, g ight\rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1} ight) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k ight)} r \\, dr \\, \frac{d\theta}{\pi} \\\\
  • &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \\, dr \\, \frac{d\theta}{\pi} \\\\
  • &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \\, dr \\, \frac{d\theta}{\pi}.
  • \end{align*}
  • \begin{equation*}
  • \int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases}
  • 1 & \text{if } j = k+1, \\\\
  • 0 & \text{if } j \neq k+1.
  • \end{cases}
  • \end{equation*}
  • Hence
  • \begin{align*}
  • \left\langle \frac{\partial f}{\partial z}, g ight\rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \\, dr \\\\
  • &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
  • \end{align*}
  • The other scalar product is
  • \begin{align*}
  • \langle f, zg angle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j ight) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta} ight)} r \\, dr \\, \frac{d\theta}{\pi} \\\\
  • &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \\, dr \\, \frac{d\theta}{\pi}.
  • \end{align*}
  • Again, integrating over $\theta$ and $j=k+1$
  • \begin{align*}
  • \langle f, zg angle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \\, dr \\\\
  • &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
  • \end{align*}
  • \begin{align*}
  • \langle \frac{\partial f}{\partial z}, g angle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\\\
  • \langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
  • \end{align*}
  • These are not equal due to the factor $(k+1)$ present in $\left\langle \frac{\partial f}{\partial z}, g ight\rangle$. So I don't know where the error is.
#1: Initial revision by user avatar Richard‭ · 2024-08-09T14:53:56Z (2 months ago)
Complex functions and inner product $\langle \frac{\partial f}{\partial z} , g\rangle $

I'm working through this academic paper : stability of the soljutions of differential equations whose author is Bernard Beauzamy. [A link to paper](https://typeset.io/pdf/stability-of-the-solutions-of-differential-equations-2byjzvdtk5.pdf)
In the academic paper, it work with the next norm
	\begin{equation*}
	\left\Vert f\right\Vert= \left( \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2} |f(re^{i\theta})|^2 r dr\frac{d\theta}{\pi} \right)^{1/2}
	\end{equation*}
for analytic polynomials 
and the scalar product associated is 
	\begin{equation*}
		<f,g>= \int_{0}^{\infty}\int_{0}^{2\pi} e^{-r^2}f(re^{i\theta})\overline{g(re^{i\theta})} r dr\frac{d\theta}{\pi}
	\end{equation*}
The lemma that i'm trying to check say the following 

For any f,g and $\mathcal{P}_2$ 
	\begin{equation*}
			\langle \frac{\partial f}{\partial z} , g\rangle =\langle f, zg \rangle \qquad \langle zf,g \rangle =\langle f, \frac{\partial g}{\partial z} \rangle
	\end{equation*}
the functions  f  and  g  are given by
	\begin{equation*}
	f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j.
	\end{equation*}
The derivative of f with respect to z is
	\begin{equation*}
	\frac{\partial f}{\partial z} = \sum_{j=1}^{\infty} a_j j z^{j-1}.
	\end{equation*}
so the scalar product is
	\begin{align*}
	\langle \frac{\partial f}{\partial z}, g \rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=1}^{\infty} a_j j (re^{i\theta})^{j-1}\right) \overline{\left(\sum_{k=0}^{\infty} b_k (re^{i\theta})^k\right)} r \, dr \, \frac{d\theta}{\pi} \\
	&= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j j r^{j-1} e^{i(j-1)\theta} \overline{b_k} r^k e^{-ik\theta} r \, dr \, \frac{d\theta}{\pi} \\
	&= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} j r^{j+k} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}.
	\end{align*}

\begin{equation*}
\int_{0}^{2\pi} e^{i(j-k-1)\theta} \frac{d\theta}{\pi} = \begin{cases}
1 & \text{if } j = k+1, \\
0 & \text{if } j \neq k+1.
\end{cases}
\end{equation*}
Hence
\begin{align*}
\langle \frac{\partial f}{\partial z}, g \rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) r^{2k+3} r \, dr \\
&= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
\end{align*}

 The other scalar product is
\begin{align*}
\langle f, zg \rangle &= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \left(\sum_{j=0}^{\infty} a_j (re^{i\theta})^j\right) \overline{\left(\sum_{k=0}^{\infty} b_k r^{k+1} e^{i(k+1)\theta}\right)} r \, dr \, \frac{d\theta}{\pi} \\
&= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_j \overline{b_k} r^{j+k+1} e^{i(j-k-1)\theta} r \, dr \, \frac{d\theta}{\pi}.
\end{align*}


Again, integrating over $ \theta $ and j=k+1 
\begin{align*}
\langle f, zg \rangle &= \int_{0}^{\infty} e^{-r^2} \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} r^{2k+3} r \, dr \\
&= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
\end{align*}


\begin{align*}
\langle \frac{\partial f}{\partial z}, g \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} (k+1) \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr, \\
\langle f, zg \rangle &= \sum_{k=0}^{\infty} a_{k+1} \overline{b_k} \int_{0}^{\infty} e^{-r^2} r^{2k+3} dr.
\end{align*}
These are not equal due to the factor (k+1) present in $\langle \frac{\partial f}{\partial z}, g \rangle $. So i don't know where is the fail.