Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on What did James Stewart mean by "the line integral reduces to an ordinary single integral in this case" ?

Post

What did James Stewart mean by "the line integral reduces to an ordinary single integral in this case" ?

+1
−5
  1. Please see the question in the title, in reference to the paragraph beside my two green question marks in the image below.
  2. How do you symbolize "the line integral reduces to an ordinary single integral in this case"? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
  3. From $\int^b_a f(x \color{goldenrod}{, 0)} \, dx $, how exactly do you deduce $= \int^b_a f(x) \, dx$? What warrants you to drop and disregard the $\color{goldenrod}{, 0)}$?
  4. I disagree that $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $ for the following reasons.
    1. You're starting with different functions. The LHS is a BIvariate function, and the RHS is a UNIvariate function.
    2. The left side requires you to evaluate $f(x, y)$ at $y = 0$. $f(x)$ requires no evaluation!

I scanned James Stewart, Daniel Clegg, Saleem Watson's Calculus Early Transcendentals, 9 edn 2021, pp. 1132-3.

Pages 1132 and 1133 of Calculus Early Transcendentals

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

3 comment threads

wrong interpretation of the phrase in 2 (1 comment)
Title equation doesn't appear in excerpt (2 comments)
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be... (1 comment)
Title equation doesn't appear in excerpt
Derek Elkins‭ wrote almost 2 years ago

The equation you give in the title doesn't seem to appear in the image (which you should reproduce the relevant part as MathJax and also crop it much more aggressively). The equation you reference is $\int_C f(x,y)ds = \int_a^b f(x, 0)dx$ There is no $f(x)$. The domain of integration is critical here, so omitting it is omitting the key aspect. If you don't see the relevance of one side of the equation being written as $\int_C$ (with $ds$) and the other as $\int_a^b$ (with $dx$), then that's what you need to understand. Once you do, what's happening in the equation should be clear. In general, if some equation seems not to be making sense, you should pay attention to all the details on each side. Mathematical notation is dense, and small differences can hold worlds of meaning.

TextKit‭ wrote almost 2 years ago

Derek Elkins‭ I recast my post. Better now?