Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on What is "continuous" in Math?

Parent

What is "continuous" in Math?

+0
−2

I understand that in Math, there is a common separation between discrete and continuous.

  • I understand that in Math we could say that discrete is anything (any set?) which is principally countable;
    I therefore assume that in Math, "continuous" would be the opposite of discrete, hence anything (any set?) which is principally noncountable, but it might be wrong.

What is "continuous" in Math?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

Post
+0
−0

There are more possible cardinalities above the the Cardinality of the continuum which is $2^{\aleph_0}$ (e.g. $2^{2^{\aleph_0}}$ - that wikipedia page even mentions this, have you actually read that), sets of those sizes generally don't contain discrete things, so your distinction is simply wrong, but at lot of it lies in equalling "principally countable" with "doesn't have the Cardinality of the continuum property".

In a lot of cases it doesn't make any sense to label something as either discrete or continuous, even giving the word "continuous" meaning probably requires some metric.

My take on a criterion to differentiate would be whether every object has a next object (as a criterion for discreteness), and that leads to a countable (perhaps finite) set, whereas continuous means there's an object between (that's where the existence of a metric comes in) any two objects in the set.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

1 comment thread

I didn't read that article, I was wrong to link to it. I have removed any reference to cardinality in... (1 comment)
I didn't read that article, I was wrong to link to it. I have removed any reference to cardinality in...
deleted user wrote over 3 years ago

I didn't read that article, I was wrong to link to it. I have removed any reference to cardinality in my question.