Comments on Area of the surface of revolution of a Reuleaux triangle
Parent
Area of the surface of revolution of a Reuleaux triangle
A Reuleaux triangle is "a curve of constant width constructed by drawing arcs from each polygon vertex of an equilateral triangle between the other two vertices."
What is the area of the surface of revolution of a Reuleaux triangle (with width $w$) through one of its symmetry axes?
Post
Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
\[f(x)=\left\{\begin{array}{ll} \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\ \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\ \end{array}\right.\]The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
Its derivative is
\[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)= \left\{\begin{array}{ll} \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\ \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\ \end{array}\right.\]The area of the surface of revolution is $S=S_1+S_2$, where
\begin{align*} S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\ S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x \end{align*}The second integral is
\[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]where
\[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]Thus,
\[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]The first integral is \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
\begin{align*} S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\ &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u \end{align*}\begin{align*} S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\ &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\ &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}}) \end{align*}Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
0 comment threads