Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

50%
+0 −0
Q&A Area of the surface of revolution of a Reuleaux triangle

posted 2mo ago by JRN‭  ·  edited 2mo ago by JRN‭

Answer
#7: Post edited by user avatar JRN‭ · 2024-10-16T08:31:18Z (2 months ago)
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=
  • \left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=
  • \left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#6: Post edited by user avatar JRN‭ · 2024-10-16T08:30:08Z (2 months ago)
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=
  • \left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#5: Post edited by user avatar JRN‭ · 2024-10-16T08:28:55Z (2 months ago)
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}
  • &,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#4: Post edited by user avatar JRN‭ · 2024-10-16T08:28:05Z (2 months ago)
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}
  • &,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#3: Post edited by user avatar JRN‭ · 2024-10-16T08:26:05Z (2 months ago)
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#2: Post edited by user avatar JRN‭ · 2024-10-16T08:24:44Z (2 months ago)
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
  • Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
  • ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
  • Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
  • ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
  • A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
  • \[f(x)=\left\{\begin{array}{ll}
  • \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
  • \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
  • Its derivative is
  • \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
  • \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\
  • \frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\
  • \end{array}\right.\]
  • The area of the surface of revolution is $S=S_1+S_2$, where
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
  • S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
  • \end{align*}
  • The second integral is
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
  • where
  • \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
  • Thus,
  • \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
  • The first integral is
  • \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
  • Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
  • Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
  • \begin{align*}
  • S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
  • &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
  • \end{align*}
  • \begin{align*}
  • S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
  • &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
  • \end{align*}
  • Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
  • For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#1: Initial revision by user avatar JRN‭ · 2024-10-16T08:22:20Z (2 months ago)
Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.

![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)

Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.

![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)

A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis

\[f(x)=\left\{\begin{array}{ll}
\sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
\sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
\end{array}\right.\]

The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.

Its derivative is
\[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\
\frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\
\end{array}\right.\]

The area of the surface of revolution is $S=S_1+S_2$, where

\begin{align*}
S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
\end{align*}

The second integral is

\[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]

where

\[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]

Thus,

\[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]

The first integral is
\[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]

Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.

Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.

\begin{align*}
S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\

&=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
\end{align*}

\begin{align*}
S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
&={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
&=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
\end{align*}

Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.

For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.