Post History
#7: Post edited
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=
- \left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=
- \left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#6: Post edited
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
\[\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)=\left\{\begin{array}{ll}- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=
- \left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#5: Post edited
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
\[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)=\left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#4: Post edited
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}
- &,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#3: Post edited
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\\frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&,0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#2: Post edited
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
- Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners.
- ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd)
- Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$.
- ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18)
- A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis
- \[f(x)=\left\{\begin{array}{ll}
- \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\
- \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis.
- Its derivative is
- \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll}
- \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\
- \frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\
- \end{array}\right.\]
- The area of the surface of revolution is $S=S_1+S_2$, where
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\
- S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x
- \end{align*}
- The second integral is
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\]
- where
- \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\]
- Thus,
- \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\]
- The first integral is
- \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\]
- Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$.
- Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$.
- \begin{align*}
- S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\
- &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u
- \end{align*}
- \begin{align*}
- S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\
- &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})
- \end{align*}
- Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$.
- For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.
#1: Initial revision
Shown below is a Reuleaux triangle with the $x$-axis as one of its symmetry axes and the origin as one of its corners. ![Reuleaux triangle 1](https://math.codidact.com/uploads/qqbj3xbm0lt09bnv3l2dc7d3uihd) Let points $A$, $B$, and $C$ be the corners of the Reuleaux triangle with width $w=1$ shown below. These are also the corners of the inscribed equilateral triangle whose side length is $w=1$. It can be seen that $A=(0,0)$, $B=\left(\frac{\sqrt{3}}{2},-\frac12\right)$, and $C=\left(\frac{\sqrt{3}}{2},\frac12\right)$. ![Reuleaux triangle 2](https://math.codidact.com/uploads/1yb0mddgotzc5knlgkcxcts29e18) A circle centered at $(h,k)$ has the equation $(x-h)^2+(y-k)^2=r^2$. From this, we find the equation of the curve above the $x$-axis \[f(x)=\left\{\begin{array}{ll} \sqrt{-x^2+\sqrt{3}x+\frac14}-\frac12&,0\le x\le\frac{\sqrt{3}}{2}\\ \sqrt{1-x^2}&,\frac{\sqrt{3}}{2}\le x\le 1\\ \end{array}\right.\] The solid is bounded by the planes $x=0$ and $x=1$ and the curve $y=f(x)$ revolved around the x-axis. Its derivative is \[{\textstyle\frac{\mathrm{d}}{\mathrm{d}x}}f(x)=\left\{\begin{array}{ll} \frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}&, 0\le x\le\frac{\sqrt{3}}{2}\\ \frac{-x}{\sqrt{1-x^2}}&, \frac{\sqrt{3}}{2}\le x\le 1\\ \end{array}\right.\] The area of the surface of revolution is $S=S_1+S_2$, where \begin{align*} S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x\\ S_2 &=\int_{\frac{\sqrt{3}}{2}}^12\pi f(x)\sqrt{1+\left({\textstyle\frac{\mathrm{d}}{\mathrm{d}x}f(x)}\right)^2}\mathrm{d}x \end{align*} The second integral is \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}\mathrm{d}x\] where \[\sqrt{1+\textstyle\left(\frac{-x}{\sqrt{1-x^2}}\right)^2}=\sqrt{1+\textstyle\frac{x^2}{1-x^2}}=\sqrt{\textstyle\frac{1-x^2+x^2}{1-x^2}}=\textstyle\frac{1}{\sqrt{1-x^2}}\] Thus, \[S_2=\int_{\frac{\sqrt{3}}{2}}^12\pi\sqrt{1-x^2}{\textstyle\frac{1}{\sqrt{1-x^2}}}\mathrm{d}x=\int_{\frac{\sqrt{3}}{2}}^12\pi\mathrm{d}x=2\pi\Big[x\Big]_{\frac{\sqrt{3}}{2}}^1=\pi(2-\sqrt{3})\] The first integral is \[S_1=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{-x^2+\sqrt{3}x+{\textstyle\frac14}}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-x+\frac{\sqrt{3}}{2}}{\sqrt{-x^2+\sqrt{3}x+\frac14}}\right)^2}\mathrm{d}x\] Note that $-x^2+\sqrt{3}x+\frac14=1-\left(x-\frac{\sqrt{3}}{2}\right)^2$. Let $u=x-\frac{\sqrt{3}}{2}$. Thus, $\mathrm{d}u=\mathrm{d}x$. If $x=0$, then $u=-\frac{\sqrt{3}}{2}$. If $x=\frac{\sqrt{3}}{2}$, then $u=0$. \begin{align*} S_1 &=\int_0^{\frac{\sqrt{3}}{2}}2\pi\left(\sqrt{1-\left(x-{\textstyle\frac{\sqrt{3}}{2}}\right)^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-\left(x-\frac{\sqrt{3}}{2}\right)}{\sqrt{1-\left(x-\frac{\sqrt{3}}{2}\right)^2}}\right)^2}\mathrm{d}x\\ &=\int_{-\frac{\sqrt{3}}{2}}^02\pi\left(\sqrt{1-u^2}-{\textstyle\frac12}\right)\sqrt{1+\textstyle\left(\frac{-u}{\sqrt{1-u^2}}\right)^2}\mathrm{d}u \end{align*} \begin{align*} S_1 &=\int_{-\frac{\sqrt{3}}{2}}^0\textstyle 2\pi\left(\sqrt{1-u^2}-{\frac12}\right)\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\ &={\textstyle 2\pi}\int_{-\frac{\sqrt{3}}{2}}^0\sqrt{1-u^2}{\textstyle\frac{1}{\sqrt{1-u^2}}}\mathrm{d}u-\pi\int_{-\frac{\sqrt{3}}{2}}^0\frac{1}{\sqrt{1-u^2}}\mathrm{d}u\\ &=2\pi\Big[u\Big]_{-\frac{\sqrt{3}}{2}}^0-\pi\Big[\arcsin(u)\Big]_{-\frac{\sqrt{3}}{2}}^0=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}}) \end{align*} Finally, $S=S_1+S_2=\pi(\sqrt{3}-{\textstyle\frac{\pi}{3}})+\pi(2-\sqrt{3})=\pi\left(2-\frac{\pi}{3}\right)$. For a width $w$, the area is $\color{lightgray}\boxed{\color{black}{\pi\left(2-{\textstyle\frac{\pi}{3}}\right)w^2}}$.