Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar TheCodidacter, or rather ACodidacter‭ · 2024-06-12T08:26:13Z (7 months ago)
Well, with my not-so-advanced vector knowledge, I've got a simpler approach in mind.

We name the angle bisector $n$. Let $A(3,0)$ and $P$ be a point in $n$ such that the distance from $P$ to $m$ is $\sqrt{10}$. Drawing the projection of $\vec{AP}$ onto $m$, we get a right triangle and plugging in some trigonometry, we find that $|\vec{AP}|\sin\angle(m,n)=\sqrt{10}$.

How do we calculate the sine? Let's take this problem to the third dimension. Then if we let $\vec b_1$ and $\vec b_2$ be the direction vectors of $m$ and $n$ (respectively), using the cross product we get that $$\sin\angle(m,n)=\sin\angle(\vec b_1,\vec b_2)=\frac{|\vec b_1\times\vec b_2|}{|\vec b_1||\vec b_2|}$$

Note that taking this to the third dimension requires us to rewrite
$$A(3,0,0),\vec b_1=\begin{pmatrix}3\\1\\0\end{pmatrix},\vec b_2=\begin{pmatrix}1\\1\\0\end{pmatrix}$$

Then,
$$\begin{aligned}|\vec{AP}|\frac{|\vec b_1\times\vec b_2|}{|\vec b_1||\vec b_2|}&=\sqrt{10}\\|\vec{AP}|\frac{|2\hat k|}{\sqrt{10}\sqrt2}&=\sqrt{10}\\|\vec{AP}|&=\frac{\sqrt{10}\sqrt2}{2}\sqrt{10}=\boxed{5\sqrt2}\end{aligned}$$

Now, let $k$ be a scalar such that $\vec{AP}=k\vec b_2=\begin{pmatrix}k\\k\\0\end{pmatrix}$. By solving for $|\vec{AP}|=|k\vec b_2|$, we get 2 possible values for $k$ and hence 2 possible coordinates for point $P$. 🙂