Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#2: Post edited by user avatar Derek Elkins‭ · 2024-06-04T07:17:31Z (7 months ago)
Make more legible and grammatical.
  • $(S,\otimes)$ is not entropic, next is an example, that is, a counterexample to the claim of the exercise.
  • $(Z_3,\odot)$, where $\odot$ is defined as $x\odot y=x+2y$, is entropic: $(x\odot y)\odot(z\odot w)=$$(x+2y)+2(z+2w)=$$x+2y+2z+4w=$$(x+2z)+2(y+2w)=$$(x\odot z)\odot(y\odot w)$. Define $\alpha(x):=x^2$ and $\beta(x):=2(x-x^2)$; $(\alpha\odot\beta)(x)=$$\alpha(x)+2\beta(x)=$$x^2+4(x-x^2)=$$x^2+x-x^2=x$. Construe $\otimes$ as $x\otimes y:=\alpha(x)\odot\beta(x)$; given $x,y,z,w\in Z_3$, $(x\otimes y)\otimes(z\otimes w)=$$\alpha(\alpha(x)+2\beta (y))+2\beta(\alpha(z)+2\beta(w))=$$2w^4+2w^3+2w^2z^2+w^2+wz^2+w+$$x^4+x^2y^2+2x^2y+$$y^4+y^3+y^2+2z^4+z^2=$$2w^2+2w^2+2w^2z^2+w^2+wz^2+w+$$x^2+x^2y^2+2x^2y+y^2+$$y^2+y^2+2z^2+z^2=$$2w^2+2w^2z^2+wz^2+w+x^2+x^2y^2+2x^2.$ In conclusion, $(Z_3,\otimes)$ is not entropic, for example, $(1\otimes2)\otimes(0\otimes0)=0
  • eq1=$$(1\otimes0)\otimes(2\otimes0)$.
  • $(S,\otimes)$ is not entropic. The following is an example, that is, a counterexample, to the claim of the exercise.
  • $(\mathbb Z_3,\odot)$ where $\odot$ is defined as $x\odot y=x+2y$, is entropic: $$\begin{align}
  • (x\odot y)\odot(z\odot w)
  • & = (x+2y)+2(z+2w) \\\\
  • & = x+2y+2z+4w \\\\
  • & = (x+2z)+2(y+2w) \\\\
  • & = (x\odot z)\odot(y\odot w).
  • \end{align}$$
  • Define $\alpha(x):=x^2$ and $\beta(x):=2(x-x^2)$. Then
  • $$\begin{align}
  • (\alpha\odot\beta)(x)
  • & = \alpha(x)+2\beta(x) \\\\
  • & = x^2+4(x-x^2) \\\\
  • & = x^2+x-x^2 \\\\
  • & = x.
  • \end{align}$$
  • Construe $\otimes$ as $x\otimes y:=\alpha(x)\odot\beta(x)$. Given $x,y,z,w\in \mathbb Z_3$, $$\begin{align}
  • & (x\otimes y)\otimes(z\otimes w) \\\\
  • & = \alpha(\alpha(x)+2\beta (y))+2\beta(\alpha(z)+2\beta(w)) \\\\
  • & = 2w^4+2w^3+2w^2z^2+w^2+wz^2+w+x^4+x^2y^2+2x^2y+y^4+y^3+y^2+2z^4+z^2 \\\\
  • & = 2w^2+2w^2+2w^2z^2+w^2+wz^2+w+x^2+x^2y^2+2x^2y+y^2+y^2+y^2+2z^2+z^2 \\\\
  • & = 2w^2+2w^2z^2+wz^2+w+x^2+x^2y^2+2x^2.
  • \end{align}$$
  • In conclusion, $(\mathbb Z_3,\otimes)$ is not entropic. For example, $$(1\otimes2)\otimes(0\otimes0)=0
  • eq 1=(1\otimes0)\otimes(2\otimes0).$$
#1: Initial revision by user avatar JohnnyJohn‭ · 2024-06-02T10:06:22Z (7 months ago)
$(S,\otimes)$ is not entropic, next is an example, that is, a counterexample to the claim of the exercise.

$(Z_3,\odot)$, where $\odot$ is defined as $x\odot y=x+2y$, is entropic: $(x\odot y)\odot(z\odot w)=$$(x+2y)+2(z+2w)=$$x+2y+2z+4w=$$(x+2z)+2(y+2w)=$$(x\odot z)\odot(y\odot w)$. Define $\alpha(x):=x^2$ and $\beta(x):=2(x-x^2)$; $(\alpha\odot\beta)(x)=$$\alpha(x)+2\beta(x)=$$x^2+4(x-x^2)=$$x^2+x-x^2=x$. Construe $\otimes$ as $x\otimes y:=\alpha(x)\odot\beta(x)$; given $x,y,z,w\in Z_3$, $(x\otimes y)\otimes(z\otimes w)=$$\alpha(\alpha(x)+2\beta (y))+2\beta(\alpha(z)+2\beta(w))=$$2w^4+2w^3+2w^2z^2+w^2+wz^2+w+$$x^4+x^2y^2+2x^2y+$$y^4+y^3+y^2+2z^4+z^2=$$2w^2+2w^2+2w^2z^2+w^2+wz^2+w+$$x^2+x^2y^2+2x^2y+y^2+$$y^2+y^2+2z^2+z^2=$$2w^2+2w^2z^2+wz^2+w+x^2+x^2y^2+2x^2.$ In conclusion, $(Z_3,\otimes)$ is not entropic, for example, $(1\otimes2)\otimes(0\otimes0)=0\neq1=$$(1\otimes0)\otimes(2\otimes0)$.