Post History
#3: Post edited
- Without loss of generality, one can assume that $m>0$. For each positive integer $n$, since the function $x\mapsto\frac{m}{x^2+m^2}$ is decreasing, one has
- $$
\frac{m}{n^2+m^2}<\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx- $$
- It follows that
- $$
- \begin{align}
- \sum_{n=1}^\infty\frac{m}{n^2+m^2}
- &=\frac{m}{1^2+m^2}+\sum_{n=2}^\infty\frac{m}{n^2+m^2}\\\\
- &<\int_{0}^{1}\frac{m}{x^2+m^2}\ dx
- +\sum_{n=2}^\infty\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx\\\\
- &=\int_0^\infty\frac{m}{x^2+m^2}\ dx = \frac{\pi}{2}
- \end{align}
- $$
- where the last integral is found by a change of variable $u=x/m$.
- Without loss of generality, one can assume that $m>0$. For each positive integer $n$, since the function $x\mapsto\frac{m}{x^2+m^2}$ is decreasing, one has
- $$
- \frac{m}{n^2+m^2} = \int_{n-1}^{n}\frac{m}{n^2+m^2}\ dx
- <\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx
- $$
- It follows that
- $$
- \begin{align}
- \sum_{n=1}^\infty\frac{m}{n^2+m^2}
- &=\frac{m}{1^2+m^2}+\sum_{n=2}^\infty\frac{m}{n^2+m^2}\\\\
- &<\int_{0}^{1}\frac{m}{x^2+m^2}\ dx
- +\sum_{n=2}^\infty\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx\\\\
- &=\int_0^\infty\frac{m}{x^2+m^2}\ dx = \frac{\pi}{2}
- \end{align}
- $$
- where the last integral is found by a change of variable $u=x/m$.
#2: Post edited
- ----
- Without loss of generality, one can assume that $m>0$. For each positive integer $n$, since the function $x\mapsto\frac{m}{x^2+m^2}$ is decreasing, one has
- $$
- \frac{m}{n^2+m^2}<\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx
- $$
- It follows that
- $$
- \begin{align}
- \sum_{n=1}^\infty\frac{m}{n^2+m^2}
- &=\frac{m}{1^2+m^2}+\sum_{n=2}^\infty\frac{m}{n^2+m^2}\\\\
- &<\int_{0}^{1}\frac{m}{x^2+m^2}\ dx
- +\sum_{n=2}^\infty\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx\\\\
- &=\int_0^\infty\frac{m}{x^2+m^2}\ dx = \frac{\pi}{2}
- \end{align}
$$
- ----
- Without loss of generality, one can assume that $m>0$. For each positive integer $n$, since the function $x\mapsto\frac{m}{x^2+m^2}$ is decreasing, one has
- $$
- \frac{m}{n^2+m^2}<\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx
- $$
- It follows that
- $$
- \begin{align}
- \sum_{n=1}^\infty\frac{m}{n^2+m^2}
- &=\frac{m}{1^2+m^2}+\sum_{n=2}^\infty\frac{m}{n^2+m^2}\\\\
- &<\int_{0}^{1}\frac{m}{x^2+m^2}\ dx
- +\sum_{n=2}^\infty\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx\\\\
- &=\int_0^\infty\frac{m}{x^2+m^2}\ dx = \frac{\pi}{2}
- \end{align}
- $$
- where the last integral is found by a change of variable $u=x/m$.
#1: Initial revision
--- Without loss of generality, one can assume that $m>0$. For each positive integer $n$, since the function $x\mapsto\frac{m}{x^2+m^2}$ is decreasing, one has $$ \frac{m}{n^2+m^2}<\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx $$ It follows that $$ \begin{align} \sum_{n=1}^\infty\frac{m}{n^2+m^2} &=\frac{m}{1^2+m^2}+\sum_{n=2}^\infty\frac{m}{n^2+m^2}\\\\ &<\int_{0}^{1}\frac{m}{x^2+m^2}\ dx +\sum_{n=2}^\infty\int_{n-1}^{n}\frac{m}{x^2+m^2}\ dx\\\\ &=\int_0^\infty\frac{m}{x^2+m^2}\ dx = \frac{\pi}{2} \end{align} $$