Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#3: Post edited by user avatar stofred‭ · 2023-06-22T17:30:26Z (11 months ago)
Title re-written
  • Function to calculate the adjacent element distance
  • Properties of distances between adjacent vector elements and related functions
#2: Post edited by user avatar stofred‭ · 2023-06-22T17:15:20Z (11 months ago)
More precise quantifier
  • I'm exploring a function that takes a non-negative integer vector $$ \theta\in {\mathbb{N}_0}^4$$ and returns the modulus of each adjacent vector components, wrapping around:
  • $$
  • s:{\mathbb{N}_0}^4 \rightarrow {\mathbb{N}_0}^4 \\
  • $$
  • $$
  • \begin{align*}
  • & s(\boldsymbol{\theta}) =
  • s\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \right) =
  • \begin{bmatrix}
  • |y-x| \\
  • |z-y| \\
  • |w-z| \\
  • |x-w|
  • \end{bmatrix}
  • \end{align*}
  • $$
  • Example:
  • $$
  • \begin{align*}
  • & s\left(\begin{bmatrix} 6 \\ 2 \\ 15 \\ 7 \end{bmatrix} \right) =
  • \begin{bmatrix}
  • |2-6| \\
  • |15-2| \\
  • |7-15| \\
  • |6-7|
  • \end{bmatrix} =
  • \begin{bmatrix}
  • |-4| \\
  • |+13| \\
  • |-8| \\
  • |-1|
  • \end{bmatrix} =
  • \begin{bmatrix}
  • 4 \\
  • 13 \\
  • 8 \\
  • 1
  • \end{bmatrix}
  • \end{align*}
  • $$
  • Basic properties of $s$ that I can prove:
  • * $ s \text{ is not linear} $
  • * $ s(\boldsymbol{0}) = \boldsymbol{0} $
  • * $ s(\lambda\boldsymbol{\theta}) = |\lambda|s(\boldsymbol{\theta}) $
  • * Let $\boldsymbol\theta' = \boldsymbol\theta - \theta_{min}$, where $\theta_{min}$ is the smallest component of $\boldsymbol\theta$. Then $s(\boldsymbol\theta)=s(\boldsymbol\theta') $
  • In my experiments, I observed that the repeated application of $s$ converged to the zero vector for all sample inputs I tried: millions of unique $\boldsymbol{\theta}\in {\mathbb{N}_0}^4$
  • As a purely recreational exercise, my goal is to prove or disprove that this holds *for all* $\boldsymbol{\theta}\in {\mathbb{N}_0}^4$:
  • $ \forall_{\boldsymbol{\theta}} \exists_{n\ge 0} \space \space \overbrace{s \circ \ s \circ \dots s}^{n} (\boldsymbol{\theta}) = \boldsymbol{0} $
  • Now my questions:
  • 1. Is $s$ a common function in some domain or application?
  • 1. Which research keyworks would you recommend to find more about $s$ (or similar function)?
  • Search expressions like "adjacent element distance" and variations thereof didn't help much. These often lead to pages more on the implementation/coding side of the problem.
  • This is purely a recreational problem. There is no real application that I know of - but I would like to know. I'm not a professional mathematician. My background is computer science.
  • Thank you
  • I'm exploring a function that takes a non-negative integer vector $$ \theta\in {\mathbb{N}_0}^4$$ and returns the modulus of each adjacent vector components, wrapping around:
  • $$
  • s:{\mathbb{N}_0}^4 \rightarrow {\mathbb{N}_0}^4 \\
  • $$
  • $$
  • \begin{align*}
  • & s(\boldsymbol{\theta}) =
  • s\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \right) =
  • \begin{bmatrix}
  • |y-x| \\
  • |z-y| \\
  • |w-z| \\
  • |x-w|
  • \end{bmatrix}
  • \end{align*}
  • $$
  • Example:
  • $$
  • \begin{align*}
  • & s\left(\begin{bmatrix} 6 \\ 2 \\ 15 \\ 7 \end{bmatrix} \right) =
  • \begin{bmatrix}
  • |2-6| \\
  • |15-2| \\
  • |7-15| \\
  • |6-7|
  • \end{bmatrix} =
  • \begin{bmatrix}
  • |-4| \\
  • |+13| \\
  • |-8| \\
  • |-1|
  • \end{bmatrix} =
  • \begin{bmatrix}
  • 4 \\
  • 13 \\
  • 8 \\
  • 1
  • \end{bmatrix}
  • \end{align*}
  • $$
  • Basic properties of $s$ that I can prove:
  • * $ s \text{ is not linear} $
  • * $ s(\boldsymbol{0}) = \boldsymbol{0} $
  • * $ s(\lambda\boldsymbol{\theta}) = |\lambda|s(\boldsymbol{\theta}) $
  • * Let $\boldsymbol\theta' = \boldsymbol\theta - \theta_{min}$, where $\theta_{min}$ is the smallest component of $\boldsymbol\theta$. Then $s(\boldsymbol\theta)=s(\boldsymbol\theta') $
  • In my experiments, I observed that the repeated application of $s$ converged to the zero vector for all sample inputs I tried: millions of unique $\boldsymbol{\theta}\in {\mathbb{N}_0}^4$
  • As a purely recreational exercise, my goal is to prove or disprove that this holds *for all* $\boldsymbol{\theta}$:
  • $ \forall_{\boldsymbol{\theta} \in {\mathbb{N}_0}^4} \exists_{n\ge 0} \space \space \overbrace{s \circ \ s \circ \dots s}^{n} (\boldsymbol{\theta}) = \boldsymbol{0} $
  • Now my questions:
  • 1. Is $s$ a common function in some domain or application?
  • 1. Which research keyworks would you recommend to find more about $s$ (or similar function)?
  • Search expressions like "adjacent element distance" and variations thereof didn't help much. These often lead to pages more on the implementation/coding side of the problem.
  • This is purely a recreational problem. There is no real application that I know of - but I would like to know. I'm not a professional mathematician. My background is computer science.
  • Thank you
#1: Initial revision by user avatar stofred‭ · 2023-06-22T17:13:40Z (11 months ago)
Function to calculate the adjacent element distance
I'm exploring a function that takes a non-negative integer vector $$ \theta\in {\mathbb{N}_0}^4$$ and returns the modulus of each adjacent vector components, wrapping around:

$$
s:{\mathbb{N}_0}^4 \rightarrow {\mathbb{N}_0}^4 \\
$$

$$
\begin{align*}
& s(\boldsymbol{\theta}) =
s\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \right) =
\begin{bmatrix}
|y-x| \\
|z-y| \\
|w-z| \\
|x-w|
\end{bmatrix}
\end{align*}
$$

Example:

$$
\begin{align*}
& s\left(\begin{bmatrix} 6 \\ 2 \\ 15 \\ 7 \end{bmatrix} \right) =
\begin{bmatrix}
|2-6| \\
|15-2| \\
|7-15| \\
|6-7|
\end{bmatrix} =

\begin{bmatrix}
|-4| \\
|+13| \\
|-8| \\
|-1|
\end{bmatrix} =

\begin{bmatrix}
4 \\
13 \\
8 \\
1
\end{bmatrix}

\end{align*}
$$

Basic properties of $s$ that I can prove:

* $ s \text{ is not linear} $
* $ s(\boldsymbol{0}) = \boldsymbol{0} $
* $ s(\lambda\boldsymbol{\theta}) = |\lambda|s(\boldsymbol{\theta}) $
* Let $\boldsymbol\theta' = \boldsymbol\theta - \theta_{min}$, where $\theta_{min}$ is the smallest component of $\boldsymbol\theta$. Then $s(\boldsymbol\theta)=s(\boldsymbol\theta') $

In my experiments, I observed that the repeated application of $s$ converged to the zero vector for all sample inputs I tried: millions of unique $\boldsymbol{\theta}\in {\mathbb{N}_0}^4$

As a purely recreational exercise, my goal is to prove or disprove that this holds *for all* $\boldsymbol{\theta}\in {\mathbb{N}_0}^4$:

$ \forall_{\boldsymbol{\theta}} \exists_{n\ge 0} \space \space \overbrace{s \circ \ s \circ \dots s}^{n} (\boldsymbol{\theta}) = \boldsymbol{0} $

Now my questions:

1. Is $s$ a common function in some domain or application?
1. Which research keyworks would you recommend to find more about $s$  (or similar function)?

Search expressions like "adjacent element distance" and variations thereof didn't help much. These often lead to pages more on the implementation/coding side of the problem.

This is purely a recreational problem. There is no real application that I know of - but I would like to know. I'm not a professional mathematician. My background is computer science.

Thank you