Post History
#2: Post edited
- I'm currently doing some work with 3D rotations and exponential coordinates. Exponential coordinates $\mathbf{s} \in \mathbb{R}^3$ are a rotation parameterization defined as
- $$\mathbf{s} = \theta \mathbf{e}$$
- where $\mathbf{e} \in \mathbb{R}^3$ is a unit-length axis of rotation, and $\theta \in [0,\pi]$ is an angle of rotation. The set of all axes is equivalent to the 2-sphere, $\mathcal{S}^2$:
- $$\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1 \} .$$
- Given a set of exponential coordinates $\mathbf{s}$, the angle can be recovered as follows:
- $$\theta = \lVert \mathbf{s} \rVert .$$
- If $\lVert \mathbf{s} \rVert \neq 0$, then the axis can be recovered as follows:
- $$\mathbf{e} = \mathbf{s}/\lVert \mathbf{s} \rVert .$$
- However, if $\lVert \mathbf{s} \rVert = 0$, then any unit-length axis can be used as the axis $\mathbf{e}$.
- I'm wondering how to express this relationship as an equation. Below are some of my ideas, but none are entirely satisfactory to me:
- **idea 1:**
- $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \text{any 3D unit vector}, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$
- **idea 2:**
- \begin{align}
- \mathbf{e} &= \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert &\neq 0\\\\
- \mathbf{e} &\in \mathcal{S}^2, & \lVert \mathbf{s} \rVert &= 0
- \end{align}
- **idea 3:**
$$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} Vert, & \lVert \mathbf{s} Verteq 0 \\ \mathbf{x} ~~~ | ~~~ \lVert \mathbf{x} Vert = 1, & \lVert \mathbf{s} Vert = 0 \end{cases}$$- **What is the best way to express the relationship/mapping from $\mathbf{s}$ to $\mathbf{e}$ mathematically (using the equations above or something else)?**
- I'm currently doing some work with 3D rotations and exponential coordinates. Exponential coordinates $\mathbf{s} \in \mathbb{R}^3$ are a rotation parameterization defined as
- $$\mathbf{s} = \theta \mathbf{e}$$
- where $\mathbf{e} \in \mathbb{R}^3$ is a unit-length axis of rotation, and $\theta \in [0,\pi]$ is an angle of rotation. The set of all axes is equivalent to the 2-sphere, $\mathcal{S}^2$:
- $$\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1 \} .$$
- Given a set of exponential coordinates $\mathbf{s}$, the angle can be recovered as follows:
- $$\theta = \lVert \mathbf{s} \rVert .$$
- If $\lVert \mathbf{s} \rVert \neq 0$, then the axis can be recovered as follows:
- $$\mathbf{e} = \mathbf{s}/\lVert \mathbf{s} \rVert .$$
- However, if $\lVert \mathbf{s} \rVert = 0$, then any unit-length axis can be used as the axis $\mathbf{e}$.
- I'm wondering how to express this relationship as an equation. Below are some of my ideas, but none are entirely satisfactory to me:
- **idea 1:**
- $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \text{any 3D unit vector}, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$
- **idea 2:**
- \begin{align}
- \mathbf{e} &= \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert &\neq 0\\\\
- \mathbf{e} &\in \mathcal{S}^2, & \lVert \mathbf{s} \rVert &= 0
- \end{align}
- **idea 3:**
- $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} Vert, & \lVert \mathbf{s} Vert
- eq 0 \\ \mathbf{x} ~~~ | ~~~ \mathbf{x} \in \mathbb{R}^3, ~\lVert \mathbf{x} Vert = 1, & \lVert \mathbf{s} Vert = 0 \end{cases}$$
- **What is the best way to express the relationship/mapping from $\mathbf{s}$ to $\mathbf{e}$ mathematically (using the equations above or something else)?**
#1: Initial revision
how to mathematically express a relationship in which a vector can be any 3D unit vector
I'm currently doing some work with 3D rotations and exponential coordinates. Exponential coordinates $\mathbf{s} \in \mathbb{R}^3$ are a rotation parameterization defined as $$\mathbf{s} = \theta \mathbf{e}$$ where $\mathbf{e} \in \mathbb{R}^3$ is a unit-length axis of rotation, and $\theta \in [0,\pi]$ is an angle of rotation. The set of all axes is equivalent to the 2-sphere, $\mathcal{S}^2$: $$\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1 \} .$$ Given a set of exponential coordinates $\mathbf{s}$, the angle can be recovered as follows: $$\theta = \lVert \mathbf{s} \rVert .$$ If $\lVert \mathbf{s} \rVert \neq 0$, then the axis can be recovered as follows: $$\mathbf{e} = \mathbf{s}/\lVert \mathbf{s} \rVert .$$ However, if $\lVert \mathbf{s} \rVert = 0$, then any unit-length axis can be used as the axis $\mathbf{e}$. I'm wondering how to express this relationship as an equation. Below are some of my ideas, but none are entirely satisfactory to me: **idea 1:** $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \text{any 3D unit vector}, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$ **idea 2:** \begin{align} \mathbf{e} &= \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert &\neq 0\\\\ \mathbf{e} &\in \mathcal{S}^2, & \lVert \mathbf{s} \rVert &= 0 \end{align} **idea 3:** $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \mathbf{x} ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$ **What is the best way to express the relationship/mapping from $\mathbf{s}$ to $\mathbf{e}$ mathematically (using the equations above or something else)?**