Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

71%
+3 −0
#2: Post edited by user avatar Trevor‭ · 2023-06-10T03:04:38Z (11 months ago)
small edit to "idea 3"
  • I'm currently doing some work with 3D rotations and exponential coordinates. Exponential coordinates $\mathbf{s} \in \mathbb{R}^3$ are a rotation parameterization defined as
  • $$\mathbf{s} = \theta \mathbf{e}$$
  • where $\mathbf{e} \in \mathbb{R}^3$ is a unit-length axis of rotation, and $\theta \in [0,\pi]$ is an angle of rotation. The set of all axes is equivalent to the 2-sphere, $\mathcal{S}^2$:
  • $$\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1 \} .$$
  • Given a set of exponential coordinates $\mathbf{s}$, the angle can be recovered as follows:
  • $$\theta = \lVert \mathbf{s} \rVert .$$
  • If $\lVert \mathbf{s} \rVert \neq 0$, then the axis can be recovered as follows:
  • $$\mathbf{e} = \mathbf{s}/\lVert \mathbf{s} \rVert .$$
  • However, if $\lVert \mathbf{s} \rVert = 0$, then any unit-length axis can be used as the axis $\mathbf{e}$.
  • I'm wondering how to express this relationship as an equation. Below are some of my ideas, but none are entirely satisfactory to me:
  • **idea 1:**
  • $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \text{any 3D unit vector}, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$
  • **idea 2:**
  • \begin{align}
  • \mathbf{e} &= \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert &\neq 0\\\\
  • \mathbf{e} &\in \mathcal{S}^2, & \lVert \mathbf{s} \rVert &= 0
  • \end{align}
  • **idea 3:**
  • $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} Vert, & \lVert \mathbf{s} Vert
  • eq 0 \\ \mathbf{x} ~~~ | ~~~ \lVert \mathbf{x} Vert = 1, & \lVert \mathbf{s} Vert = 0 \end{cases}$$
  • **What is the best way to express the relationship/mapping from $\mathbf{s}$ to $\mathbf{e}$ mathematically (using the equations above or something else)?**
  • I'm currently doing some work with 3D rotations and exponential coordinates. Exponential coordinates $\mathbf{s} \in \mathbb{R}^3$ are a rotation parameterization defined as
  • $$\mathbf{s} = \theta \mathbf{e}$$
  • where $\mathbf{e} \in \mathbb{R}^3$ is a unit-length axis of rotation, and $\theta \in [0,\pi]$ is an angle of rotation. The set of all axes is equivalent to the 2-sphere, $\mathcal{S}^2$:
  • $$\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1 \} .$$
  • Given a set of exponential coordinates $\mathbf{s}$, the angle can be recovered as follows:
  • $$\theta = \lVert \mathbf{s} \rVert .$$
  • If $\lVert \mathbf{s} \rVert \neq 0$, then the axis can be recovered as follows:
  • $$\mathbf{e} = \mathbf{s}/\lVert \mathbf{s} \rVert .$$
  • However, if $\lVert \mathbf{s} \rVert = 0$, then any unit-length axis can be used as the axis $\mathbf{e}$.
  • I'm wondering how to express this relationship as an equation. Below are some of my ideas, but none are entirely satisfactory to me:
  • **idea 1:**
  • $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \text{any 3D unit vector}, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$
  • **idea 2:**
  • \begin{align}
  • \mathbf{e} &= \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert &\neq 0\\\\
  • \mathbf{e} &\in \mathcal{S}^2, & \lVert \mathbf{s} \rVert &= 0
  • \end{align}
  • **idea 3:**
  • $$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} Vert, & \lVert \mathbf{s} Vert
  • eq 0 \\ \mathbf{x} ~~~ | ~~~ \mathbf{x} \in \mathbb{R}^3, ~\lVert \mathbf{x} Vert = 1, & \lVert \mathbf{s} Vert = 0 \end{cases}$$
  • **What is the best way to express the relationship/mapping from $\mathbf{s}$ to $\mathbf{e}$ mathematically (using the equations above or something else)?**
#1: Initial revision by user avatar Trevor‭ · 2023-06-10T03:02:10Z (11 months ago)
how to mathematically express a relationship in which a vector can be any 3D unit vector
I'm currently doing some work with 3D rotations and exponential coordinates. Exponential coordinates $\mathbf{s} \in \mathbb{R}^3$ are a rotation parameterization defined as
$$\mathbf{s} = \theta \mathbf{e}$$
where $\mathbf{e} \in \mathbb{R}^3$ is a unit-length axis of rotation, and $\theta \in [0,\pi]$ is an angle of rotation. The set of all axes is equivalent to the 2-sphere, $\mathcal{S}^2$:
$$\mathcal{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1 \} .$$

Given a set of exponential coordinates $\mathbf{s}$, the angle can be recovered as follows:
$$\theta = \lVert \mathbf{s} \rVert .$$
If $\lVert \mathbf{s} \rVert \neq 0$, then the axis can be recovered as follows:
$$\mathbf{e} = \mathbf{s}/\lVert \mathbf{s} \rVert .$$
However, if $\lVert \mathbf{s} \rVert = 0$, then any unit-length axis can be used as the axis $\mathbf{e}$.

I'm wondering how to express this relationship as an equation. Below are some of my ideas, but none are entirely satisfactory to me:


**idea 1:**
$$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \text{any 3D unit vector}, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$

**idea 2:**
\begin{align}
\mathbf{e} &= \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert &\neq 0\\\\
\mathbf{e} &\in \mathcal{S}^2, & \lVert \mathbf{s} \rVert &= 0
\end{align}

**idea 3:**
$$\mathbf{e} = \begin{cases} \mathbf{s}/\lVert \mathbf{s} \rVert, & \lVert \mathbf{s} \rVert \neq 0 \\ \mathbf{x} ~~~ | ~~~ \lVert \mathbf{x} \rVert = 1, & \lVert \mathbf{s} \rVert = 0 \end{cases}$$

**What is the best way to express the relationship/mapping from $\mathbf{s}$ to $\mathbf{e}$ mathematically (using the equations above or something else)?**