Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar r~~‭ · 2023-05-13T01:07:29Z (over 1 year ago)
The author of this passage is proposing a very simple *hidden variable model*. This model has two variables:
* $A$ — whether the patient has certain unknown genes (this variable is hidden)
* $B$ — whether the treatment succeeds (this variable is observed)

And the model proposes that $A$ influences $B$. Mathematically, this model predicts that $P(B) = P(B|A)P(A)$. The author observes that an observed value of $P(B)$ (42%) is insufficient to infer either $P(B|A)$ or $P(A)$ by themselves, assuming this model.

The two examples the author gives correspond to assuming that $P(A)$ is 1 (everyone's genes are good enough for the treatment—in which case $P(B|A) = P(B) = 0.42$) and that $P(B|A)$ is 1 (the treatment is always effective if the right genes are present—in which case $P(A) = P(B) = 0.42$). If your hidden variable model contains probabilities that identically equal 1, you have an opportunity to eliminate variables from the model (both of these examples represent opportunities to reduce the number of variables from 2 to 1). This process might be called dimensionality reduction, though that usually refers to lossy simplifications of models from more to fewer variables, and eliminating identical variables is lossless.