Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar Tim Pederick‭ · 2023-04-26T08:29:23Z (over 1 year ago)
I may be misreading your post, but it seems like there is some confusion between these two things:

1. Winning the lottery *twice*
2. Winning the lottery *a second time*

All of the remarks about the probability being the same are relevant to the second situation. Your calculations, however, address the *first* situation.

Perhaps it will be easier to avoid confusion if we use specifics. Let’s say that this is a lottery that will only ever be run twice, namely next Monday and Tuesday. Let’s say that both draws have a thousand entrants—in fact, the same thousand—and that all of them have an equal chance of winning ($p=\frac{1}{1000}$) in each draw. And let’s say that you, Chgg Clou, win Monday’s lottery.

Now, situation 2 is this: What is the probability that you win Tuesday’s lottery? It’s $\frac{1}{1000}$. The fact that you won Monday’s lottery doesn’t affect that (barring any rules forbidding a double win, or using your winnings to bribe the operators, or…).

Situation 1, meanwhile, is this: What is the probability that you win *both Monday’s and Tuesday’s lotteries*? Before Monday, we would have simply said that you (and everyone else) had a $\frac{1}{1\,000\,000}$ chance of doing so. But now?

Intuition’s a funny thing, but to me it seems very intuitive that this *is* improved by the fact that you won on Monday. You’re the *only* person who can possibly do it! Everyone else’s chances dropped to zero the moment Monday’s result came up. Your chances got better, and theirs got worse.

---

More broadly, you can compare it to a sport or other contest. (For the best analogy, think of one like volleyball where you need to be the first to reach a certain score, rather than simply ending the game with a higher score. But if we’re after intuitive acceptance, that may not matter.)

Does it make intuitive sense that your chances of winning are higher when you’re in the lead? Even assuming your chances of scoring *at any given point* are always the same (no psychological advantage to being in the lead, no pressure not to blow it), being in front makes you more likely to win.