Post History
#10: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $$x\mapsto f(x,0)$$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
#9: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then xxx $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
#8: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then xxx $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
#7: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
#6: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
#5: Post edited
> How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
<p>- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
</p>- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
<p>- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
</p>
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
#4: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
\int_a^b f(x,0)dx = \int_a^b g(x)dx- $$
- is an "ordinary single integral" (of the function $g$).
Consider for instance $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and- $$
\int_0^1f(x,0)dx = \int_0^1 2xdx=1$$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- <p>
- $$
- \int_a^b f(x,0)\;dx = \int_a^b g(x)\;dx
- $$
- </p>
- is an "ordinary single integral" (of the function $g$).
- Consider for instance, $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- <p>
- $$
- \int_0^1f(x,0)\;dx = \int_0^1 2x\;dx=1
- $$
- </p>
#3: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)dx = \int_a^b g(x)dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
\int_0^1f(x,0)dx = \int_0^1 2xdx=1\;.- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)dx = \int_a^b g(x)dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)dx = \int_0^1 2xdx=1
- $$
#2: Post edited
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)dx = \int_a^b g(x)dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)dx = \int_0^1 2xdx=1\;.
- $$
- > How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $?
- **NO**.
- For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then
- $$
- \int_a^b f(x,0)dx = \int_a^b g(x)dx
- $$
- is an "ordinary single integral" (of the function $g$).
- Consider for instance $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and
- $$
- \int_0^1f(x,0)dx = \int_0^1 2xdx=1\;.
- $$
#1: Initial revision
> How do you symbolize _"the line integral reduces to an ordinary single integral in this case"_? $\int^b_a f(x {\color{goldenrod}{, 0)}} \, dx = \int^b_a f(x) \, dx $? **NO**. For any function with *two* variables, $f(x,y)$, if you fix the value of $y$ at $0$, then $x\mapsto f(x,0)$ gives you a function in only one variable. Call this function $g(x)$. Then $$ \int_a^b f(x,0)dx = \int_a^b g(x)dx $$ is an "ordinary single integral" (of the function $g$). Consider for instance $f(x,y)=2x+x^2y$. Then $f(x,0)=2x$ and $$ \int_0^1f(x,0)dx = \int_0^1 2xdx=1\;. $$