Post History
#2: Post edited
- This is just middle school algebra.
$\frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b){\color{red}{(b^2 - a^2)}} + \dfrac{1}{4}(b+ a)^2(b-a) ight] \equiv \frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b){\color{red}{(a + b)(b - a)}} + \dfrac{1}{4}(b+ a)^2(b-a) ight] \equiv \frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b)^2(b - a) + \dfrac{1}{4}(b+ a)^2(b-a) ight]$
- This is just middle school algebra.
- $\frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b){\color{red}{(b^2 - a^2)}} + \dfrac{1}{4}(b+ a)^2(b-a) ight] \equiv \frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b){\color{red}{(a + b)(b - a)}} + \dfrac{1}{4}(b+ a)^2(b-a) ight] \equiv \frac{1}{b-a} \left[ -\dfrac{1}{2}{\color{limegreen}{(a + b)^2(b - a)}} + \dfrac{1}{4}{\color{limegreen}{(a + b)^2(b - a)}} ight]$
#1: Initial revision
This is just middle school algebra. $\frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b){\color{red}{(b^2 - a^2)}} + \dfrac{1}{4}(b+ a)^2(b-a)\right] \equiv \frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b){\color{red}{(a + b)(b - a)}} + \dfrac{1}{4}(b+ a)^2(b-a)\right] \equiv \frac{1}{b-a} \left[ -\dfrac{1}{2}(a + b)^2(b - a) + \dfrac{1}{4}(b+ a)^2(b-a)\right]$