Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

71%
+3 −0
Q&A Matrices with rotational symmetry

1 answer  ·  posted 2y ago by Peter Taylor‭  ·  last activity 2y ago by Peter Taylor‭

#1: Initial revision by user avatar Peter Taylor‭ · 2022-05-05T22:24:34Z (almost 2 years ago)
Matrices with rotational symmetry
I've seen a [claim without proof](https://mathoverflow.net/a/418547) that the characteristic polynomials of matrices with rotational symmetry (i.e. $n \times n$ matrices $A$ with $A_{i,j} = A_{n+1-i,n+1-j}$) always factor into the product of the characteristic polynomials of smaller matrices which can be derived from blocks of the original matrix. Is there an elementary proof, and can the result be generalised?