Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#6: Post edited by user avatar Tyma Gaidash‭ · 2022-04-22T04:37:45Z (almost 2 years ago)
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y $$
  • $$\implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)$$
  • $$\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\ \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)$$
  • $$=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32\right)-1\right)^2}$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $1-(2x-1)^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32\right)$$
  • $$=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y $$
  • $$\implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)$$
  • $$\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a closed form with $0$ error**](https://www.wolframalpha.com/input?i=+sqrt%281-%282inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-1%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\ \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)$$
  • $$=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32\right)-1\right)^2}$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $1-(2x-1)^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32\right)$$
  • $$=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
#5: Post edited by user avatar Tyma Gaidash‭ · 2022-04-22T04:35:26Z (almost 2 years ago)
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y $$
  • $$\implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)$$
  • $$\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\ \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)$$
  • $$=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32 ight) ight)^2}$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $x-x^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32\right)$$
  • $$=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y $$
  • $$\implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)$$
  • $$\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\ \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)$$
  • $$=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32 ight)-1 ight)^2}$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $1-(2x-1)^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32\right)$$
  • $$=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
#4: Post edited by user avatar Tyma Gaidash‭ · 2022-04-22T04:33:28Z (almost 2 years ago)
  • Why does the Dottie number $=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32 ight) ight)^2}$?
  • Why does the Dottie number $=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32 ight)-1 ight)^2}$?
#3: Post edited by user avatar Tyma Gaidash‭ · 2022-04-22T04:33:08Z (almost 2 years ago)
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32 ight)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32 ight) \text I_{\sin^2(z)}\left(\frac12,\frac32 ight)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32 ight)=y \implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32 ight)\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32 ight)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\,\text I^{-1}_\frac12\left(\frac 12,\frac 32 ight)$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $x-x^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32 ight)=\frac {\text D_\text{DHA}^2}4$$
  • $$=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
  • **Please Note:**
  • Sorry if the MathJax does not show up; it is my first time on codidact, so please see the “cross posted link” at the top for the original source.
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32 ight)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32 ight) \text I_{\sin^2(z)}\left(\frac12,\frac32 ight)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32 ight)=y $$
  • $$\implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32 ight)$$
  • $$\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32 ight)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\ \text I^{-1}_\frac12\left(\frac 12,\frac 32 ight)$$
  • $$=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32\right)\right)^2}$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $x-x^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32 ight)$$
  • $$=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
#2: Post edited by user avatar Tyma Gaidash‭ · 2022-04-22T04:29:07Z (almost 2 years ago)
MathJax separate
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y \implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$
  • Therefore:
  • >$$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32 ight)}=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32 ight) ight)\,\implies \text I^{-1}_x\left(\frac12,\frac32 ight)= \sin^2\left(\frac{\text E(-1,\pi x)}2 ight)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2 ight) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32 ight)}=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32 ight) ight) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\,\text I^{-1}_\frac12\left(\frac 12,\frac 32 ight)=2\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)-\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)^2}$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $x-x^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32 ight)=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32 ight)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
  • **Please Note:**
  • Sorry if the MathJax does not show up; it is my first time on codidact, so please see the “cross posted link” at the top for the original source.
  • **Introduction:**
  • For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number),
  • Cross posted from:
  • >[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)
  • since the original question is unanswered.
  • Some definitions:
  • The “solution” to [Kepler’s equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):
  • $$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$
  • and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):
  • $$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$
  • $$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$
  • where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:
  • $$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$
  • and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$
  • while the dottie number:
  • $$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$
  • However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y \implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$
  • Therefore:
  • $$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32 ight)}$$
  • $$=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32 ight) ight)\,\implies \text I^{-1}_x\left(\frac12,\frac32 ight)= \sin^2\left(\frac{\text E(-1,\pi x)}2 ight)=\text {hav}(\text E(-1,x))$$
  • where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)
  • Therefore:
  • $$\text D= \frac\pi2-\text E\left(-1,\frac\pi2 ight) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32 ight)}$$
  • $$=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32 ight) ight) $$
  • which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:
  • **The Main Result:**
  • $$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\,\text I^{-1}_\frac12\left(\frac 12,\frac 32 ight)$$
  • where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10).
  • **The Question:**
  • Even though the calculations are an explanation,
  • what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?
  • Phrased differently, why is the dottie number the positive square root of $x-x^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?
  • Please correct me and give me feedback!
  • **Side Note $1$:**
  • Therefore we have a closed form for a Inverse Beta Regularized function special case:
  • Median of $\frac 2\pi \sqrt{\frac 1x-1}$:
  • [![enter image description here][1]][1]
  • where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:
  • $$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32 ight)=\frac {\text D_\text{DHA}^2}4$$
  • $$=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…$$
  • $$\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32 ight)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$
  • where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)
  • Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.
  • [1]: https://i.stack.imgur.com/1Hewl.jpg
  • **Please Note:**
  • Sorry if the MathJax does not show up; it is my first time on codidact, so please see the “cross posted link” at the top for the original source.
#1: Initial revision by user avatar Tyma Gaidash‭ · 2022-04-22T04:26:17Z (almost 2 years ago)
Why does the Dottie number $=\sqrt{1-\left(2\text I^{-1}_\frac12\left(\frac12,\frac32\right)\right)^2}$?
**Introduction:**

For some background information on the [**Dottie Number D**](https://en.m.wikipedia.org/wiki/Dottie_number), 

Cross posted from: 
>[Why does the Dottie Number equal a median of a Beta distribution?](https://math.stackexchange.com/questions/4389528/why-dottie-2-sqrti-1-frac12-frac-12-frac-32-i-1-frac12-frac-12-fr)

since the original question is unanswered.

Some definitions:

The “solution” to [Kepler’s  equation](https://en.m.wikipedia.org/wiki/Kepler%27s_equation) is [Kepler E](https://resources.wolframcloud.com/FunctionRepository/resources/KeplerE/):

$$M=E-e\sin(E)\iff x=y-a\sin(y)\implies y=\text E(a,x)$$

and [**Inverse Beta Regularized function $\text I^{-1}_z(a,b)$**](https://reference.wolfram.com/language/ref/InverseBetaRegularized.html), [Beta Regularized function $\text I_z(a,b)$](https://mathworld.wolfram.com/RegularizedBetaFunction.html), and [the Incomplete Beta function $\text B_z(a,b)$](https://mathworld.wolfram.com/IncompleteBetaFunction.html):


$$\text B_z(a,b)=\int_0^z t^{a-1} (1-t)^{b-1}dt, \text I_z(a,b)=\frac{\int_0^z t^{a-1} (1-t)^{b-1}dt}{\int_0^1 t^{a-1} (1-t)^{b-1}dt } =\frac{\text B_z(a,b)}{\text B(a,b)}$$


$$\text I_y(a,b)=z\implies y=\text I^{-1}_{0\le z\le 1}(a\ge 0,b\ge0)=\text I^{-1}_z(a,b)$$

where the restrictions on $z,a,b$ help find the [quantile](https://en.m.wikipedia.org/wiki/Quantile_function) of a [Beta type Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution). The goal is to notice that:

$$\text B_z\left(\frac12,\frac32\right)=\int_0^z \sqrt{\frac 1x-1}dx=\sqrt{x-x^2}+\sin^{-1}\sqrt x\implies \text B_{\sin^2(z)}\left(\frac12,\frac32\right)\mathop=^{0\le z\le 1}z+\sin(z)\cos(z)=z+\frac12 \sin(2z)$$


and $$z+\frac12 \sin(2z)=y\mathop=^{x=2z} \frac x2+\frac 12 \sin(x)=y\implies x-(-\sin(x))=2y\implies x=\text E(-1,2y)\implies z=\frac {\text E(-1,2y)}2$$

while the dottie number:

$$x=\text D:x-\cos(x)=0\mathop\implies^{x=\frac \pi2-z}\frac \pi2-z-\cos\left(\frac\pi2-z\right)=\frac\pi2-z-\sin(z)=0\implies \frac \pi2=z-(-\sin(z))\implies z=\text E\left(-1,\frac\pi2\right)=\frac\pi 2-x\implies  \frac\pi2-\text E\left(-1,\frac\pi2\right) =x$$

However if $$\text B_{\sin^2(z)}\left(\frac12,\frac32\right)=z+\frac12 \sin(2z)=\text B\left(\frac12,\frac32\right) \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=\frac \pi2 \text I_{\sin^2(z)}\left(\frac12,\frac32\right)=y \implies \sin^2(z)=\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)\mathop\implies^{0\le z\le\frac \pi 2} \sin^{-1}\sqrt{\text I^{-1}_{\frac{2y}\pi}\left(\frac12,\frac32\right)}=z$$

Therefore:

>$$\text E(-1,x)=2\sin^{-1}\sqrt{\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)}=\text{hav}^{-1}\left(\text I^{-1}_{\frac x\pi}\left(\frac12,\frac32\right)\right)\,\implies \text I^{-1}_x\left(\frac12,\frac32\right)= \sin^2\left(\frac{\text E(-1,\pi x)}2\right)=\text {hav}(\text E(-1,x))$$

where appears the [Half Versed Sine](https://mathworld.wolfram.com/Haversine.html) and [Inverse Half Versed Sine](https://mathworld.wolfram.com/InverseHaversine.html)

Therefore:

$$\text D=  \frac\pi2-\text E\left(-1,\frac\pi2\right) =\frac \pi2-2\sin^{-1}\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)}=\sin^{-1}\left(1-2 \text I^{-1}_\frac12\left(\frac 12,\frac 32\right)\right) $$

which is the [Inverse](https://www.wolframalpha.com/input?i=inverse+hacoversin%28x%29) [Half Covered Sine](https://mathworld.wolfram.com/Hacoversine.html). Using $\text D=\cos^{-1}(\text D)$ we get [**a perfect approximation with this computation**](https://www.wolframalpha.com/input?i=2+sqrt%28inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29-inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%5E2%29-dottie+number) and another closed form:

**The Main Result:**
$$\text{Dottie Number}=\text D=\text{hacoversin}^{-1}\,\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)=2\sqrt{\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)-\text I^{-1}_\frac12\left(\frac 12,\frac 32\right)^2}$$

where $\sqrt{\text{quantile}(1-\text{quantile})}$ is not quite a statistical formula and where the arcsin formula works with an [**error of $10^{-179}$**](https://www.wolframalpha.com/input?i=sin%5E%28-1%29%281+-+2+inversebetaregularized%281%2F2%2C1%2F2%2C3%2F2%29%29-dottie+number). Also, $\text I^{-1}_\frac12(a,b)$ finds the [median of a Beta Distribution](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/14) with $a,b$ as [shape parameters](https://en.m.wikipedia.org/wiki/Beta_distribution#/editor/10). 

**The Question:**

Even though the calculations are an explanation, 

what is the intuition behind the Dottie number being the inverse half covered sine of the median of a Beta distribution with half integer shape parameters?

Phrased differently, why is the dottie number the positive square root of $x-x^2$ where $x$ is the median of a Beta distribution with half integer shape parameters?

Please correct me and give me feedback!

**Side Note $1$:**

Therefore we have a closed form for a Inverse Beta Regularized function special case:

Median of $\frac 2\pi \sqrt{\frac 1x-1}$:

[![enter image description here][1]][1]

where the median is the point such that half of the area of a curve is the red region and the other half is the blue region. The $\color{red}{\text {red}}$ horizontal line is the median:

$$\text{median}=\text I^{-1}_\frac12\left(\frac12,\frac32\right)=\frac {\text D_\text{DHA}^2}4=\text{hacoversin}(\text D)= \frac{1-\sqrt{1-\text D^2}}2=0.16319398540839259232…\implies \int_0^{\frac {\text D_\text{DHA}^2}4} \sqrt{\frac1x-1}\,dx=\int_0^{\text I^{-1}_\frac12\left(\frac12,\frac32\right)} \sqrt{\frac1x-1}\,dx=\frac\pi4 $$

where $\text D_\text{DHA}= \sqrt{1+\text D} - \sqrt{1-\text D} = \sqrt 2\sqrt{1-\sqrt{1-\text D^2}} $ is the [offset at which $2$ unit disks overlap by half of each’s area](https://mathworld.wolfram.com/Circle-CircleIntersection.html) [constant](https://m.youtube.com/watch?v=LV9LAYl0kYM)

Notice how the dottie number appears in the offset when a unit disk is *half* over another one and the median, where the areas from $0$ to the median is *half* of the area under the curve, of a beta distribution.

  [1]: https://i.stack.imgur.com/1Hewl.jpg
**Please Note:**

Sorry if the MathJax does not show up; it is my first time on codidact, so please see the “cross posted link” at the top for the original source.