Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar Udi Fogiel‭ · 2022-03-25T00:12:09Z (about 2 years ago)
First of all, let's suppose that the points on the ellipse $(x_1,y_1),(x_2,y_2)$ are of the same distance from $(0,-2)$. We will get three equations from this assumption:

$$
\begin{cases}
x_1^2+3y_1^2=12 & (1)\\\\\\\\
x_2^2+3y_2^2=12 & (2)\\\\\\\\
x_1^2+(y_1+2)^2=x_2^2+(y_2+2)^2 & (3)
\end{cases}
$$

After substituting $x_1^2,x_2^2$ with $12-3y_1^2,12-3y_2^2$ in equation $(3)$ respectively, we will get $-2y_1^2+4y_1+16=-2y_2^2+4y_2+16$, which is equivalent to $(y_1-1)^2=(y_2-1)^2$. Now we will divide to two separate cases.

**Case 1:**

 If $(y_1-1),(y_2-1)$ are of the same sign (positive or negative), we can infer that $y_1=y_2$, and after equating $(1),(2)$ we will get $x_1^2+3y_1^2=x_2^2+3y_2^2$, Hence $x_1^2=x_2^2$. So there are two options again

**Subcase 1:** 

if $x_1=x_2$, then the two points are that same point. In this case the answer will depend on your definition of an equilateral triangle. if you consider a line as an equilateral triangle, then  every point on the ellipse will be a solution. If you will demand that the distance between all *three* (if we will consider the same point we got as two solutions) points will be the same, there is only one solution, that all the points will be $(0,-2)$. If you consider only triangles with three distinct points, we will have no solution in this case.

**Subcase 2:**

if $x_1=-x_2$, for simplicity i will denote $x_1=x\ y_1=y,\ x_2=-x,\ y_2=y$. The distance between the points $(x,y)$ and $(-x,y)$ is $2x$, and the distance between those two points to $(0,-2)$ is $\sqrt{x^2+(y+2)^2}$, so if we will require that this two length will be equal we will get the equation $4x^2=x^2+(y+2)^2$, and after substituting $x^2$ with $12-3y^2$ we will get 

$$
0=9y^2-36+y^2+4y+4=10y^2+4y-32=2(y+2)(5y-8)
$$ 

If $y=2$, then we will be at the last case, other wise we will have $y=\frac{8}{5}=1.6$, $|x|=\sqrt{12-3y^2}=\frac{6}{5}\sqrt{3}=1.2\sqrt{3}$, so the two points will be $(\pm 1.2\sqrt{3},1.6)$ as in the book.

**Case 2:**

If the signs of $(y_1-1),(y_2-1)$ are opposite, we will get $y_1=2-y_2$. From equations $(1),(2)$ we will get $x_1^2-x_2^2=3(y_2^2-y_1^2)=3(y_2+y_1)(y_2-y_1)=12(y_2-1)=12(1-y_1)$. Now, if we will require that the distance between $(x_1,y_1),(x_2,y_2)$ equals to the distance between $(x_1,y_1),(0,-2)$ we could write

$$
\begin{align}
(x_1-x_2)^2+(y_1-y_2)^2 & =x_1^2+(y_1+2)^2\\\\
\\\\
x_1^2+x_2^2-2x_1x_2+(2y_1-2)^2 & =x_1^2+y_1^2+4y_1+4\\\\
\\\\
x_2^2-2x_1x_2+4y_1^2-8y_1+4 & =y_1^2+4y_1+4\\\\
\\\\
-2x_1x_2+x_2^2+3y_1^2-12y_1 & =0\ \/  {\color{gray}\text{because}\ 3y_1^2=12-x_1^2\ \text{we will get} }\\\\
\\\\
-2x_1x_2+12+x_2^2-x_1^2-12y_1 & =0\ \/  {\color{gray}\text{remember that}\ x_1^2-x_2^2=12(1-y_1)}\\\\
\\\\
-2x_1x_2-12(1-y_1)+12(1-y_1) & =0\\\\
\\\\
-2x_1x_2 & =0
\end{align}
$$ 

Thus $x_1$ or $x_2$ are vanishing. Without loss of generality i will assume that $x_1=0$.  From that we will get that $y_1=\pm 2$. Because $y_1+y_2=2$ and $y_2\leq 2$, we will conclude that $y_1\geq 0$ so $y_1=2$. Because $y_1+y_2=2$ we will get that $y_2=0$, so $x_2=\pm\sqrt{12}$, as you got as well.

**Conclusion:** All the solutions are $\left\[(1.2\sqrt{3},1.6),(-1.2\sqrt{3},1.6)\right\],\ \left\[(0,2),(\sqrt{12},0)\right\],\ \left[(0,2),(-\sqrt{12},0)\right]$.