Post History
#2: Post edited
- In the post, actually $\dot{y}=\frac{dy}{dx}$. So,
- $$\int_{x_1}^{x_2}\frac{\partial f}{\partial \dot{y}}\frac{\partial \dot{y}}{\partial \alpha}\mathrm dx=\int_{x_1}^{x_2}\frac{\partial f}{\partial \dot{y}}\frac{\partial^2 y}{\partial x \partial \alpha}\mathrm dx$$
In the equation, they just wrote $\frac{dy}{dx}$ instead of $\dot{y}$
- In the post, actually $\dot{y}=\frac{dy}{dx}$. So,
- $$\int_{x_1}^{x_2}\frac{\partial f}{\partial \dot{y}}\frac{\partial \dot{y}}{\partial \alpha}\mathrm dx=\int_{x_1}^{x_2}\frac{\partial f}{\partial \dot{y}}\frac{\partial^2 y}{\partial x \partial \alpha}\mathrm dx$$
- In the equation, they just wrote $\frac{dy}{dx}$ instead of $\dot{y}$
- >>![book screenshot](https://math.codidact.com/uploads/BB2jmhQ1k991CbmZ3xhoiJCL)
#1: Initial revision
In the post, actually $\dot{y}=\frac{dy}{dx}$. So, $$\int_{x_1}^{x_2}\frac{\partial f}{\partial \dot{y}}\frac{\partial \dot{y}}{\partial \alpha}\mathrm dx=\int_{x_1}^{x_2}\frac{\partial f}{\partial \dot{y}}\frac{\partial^2 y}{\partial x \partial \alpha}\mathrm dx$$ In the equation, they just wrote $\frac{dy}{dx}$ instead of $\dot{y}$