Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar Derek Elkins‭ · 2021-07-17T21:39:10Z (over 2 years ago)
Memorizing or using actual trigonometry to re-derive trigonometric formulas is a waste of time and mental resources. (This isn't to say it isn't useful to go through the trigonometric approach once and to understand how they relate.) Instead, there is just one relatively simple formula that one needs from which all of this follows from basic algebra. Namely, Euler's formula: $$e^{\theta i} = \cos\theta + i\sin\theta$$ where $i$ is the imaginary unit, i.e. $i = \sqrt{-1}$. Given this, all of the above formulas follow readily from normal properties of exponents and then straightforward complex algebra.

Angle addition corresponds to the fact that, in general, $x^ax^b = x^{a+b}$ and so concretely, $e^{\alpha i}e^{\beta i} = e^{(\alpha + \beta)i}$. Expanding each exponential with Euler's formula and multiplying the complex number on the left hand side gives:

$$\begin{align}
e^{\alpha i}e^{\beta i} & = (\cos\alpha + i\sin\alpha)(\cos\beta + i\sin\beta) \\\\
& = \cos\alpha\cos\beta + i\sin\alpha\cos\beta + i\cos\alpha\sin\beta + i^2\sin\alpha\sin\beta \\\\
& = (\cos\alpha\cos\beta - \sin\alpha\sin\beta) + i(\cos\alpha\sin\beta + \sin\alpha\cos\beta) \\\\
& = \cos(\alpha+\beta) + i\sin(\alpha + \beta) \\\\
& = e^{(\alpha + \beta)i}
\end{align}$$

Equating the components of the complex numbers gives both of the angle addition formulas. Angle subtraction is just as easy. One can derive the double angle formula via $e^{(\alpha + \alpha)i}$ or equivalently $(e^{\alpha})^2$.

More challengingly but still a straightforward exercise in algebra is the half angle formula. Here, we use an implicit formula $(e^{(\alpha/2)i})^2 = e^{\alpha i}$. Write $a$ and $b$ for the real and imaginary components of $e^{(\alpha/2)i}$, i.e. $e^{(\alpha/2)i} = a + bi$. Squaring, we get $(a+bi)^2 = (a^2 - b^2) + 2abi$. Equating this to $e^{\alpha i}$ gives us the following system of *three* equations: $$\cos\alpha = a^2 - b^2 \qquad \sin\alpha = 2ab \qquad a^2 + b^2 = 1$$ the last because $a = \cos(\alpha/2)$ and $b = \sin(\alpha/2)$ and $\cos^2\theta + \sin^2\theta = 1$ corresponding to $|e^{\theta i}| = 1$ for any $\theta$.

With this we can quickly compute that $a^2 = (1 + \cos\alpha)/2$ and thus $b^2 = (1 - \cos\alpha)/2$. That gives $a = \pm\sqrt{(1 + \cos\alpha)/2}$ and $b = \pm\sqrt{(1 - \cos\alpha)/2}$ where the signs are correlated based on the $\sin\alpha = 2ab$ equation, but we still end up with two possibilities corresponding to the fact that, e.g., a $90^\circ$ angle can be split into two $45^\circ$ angles or two $135^\circ$ angles.