Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar r~~‭ · 2021-07-11T18:13:48Z (over 2 years ago)
$n$ is free in the expression $\sum_{r=0}^n 2^{n-r}\binom{n+r}{n}$. The only variable not free in that expression is $r$. What $\sum_{r=0}^n$ means is to treat what comes next as a function of $r$, and compute the sum of that function evaluated at $0$, $1$, and so on up to $n$. If $n$ is used inside that function, its value isn't affected by the $\sum$ notation. The fact that it's used in setting one of the limits of the $\sum$ is irrelevant. So if you are dividing the entire expression by some term involving $n$, it is legal to bring that term inside the summation, because
$$
\frac{f(0) + f(1) + \cdots + f(n)}{g(n)} =
\frac{f(0)}{g(n)} + \frac{f(1)}{g(n)} + \cdots + \frac{f(n)}{g(n)}$$

The other point I would make is a subtle one, but it trips people up a lot when learning algebra. In a change of variables, you aren't replacing $r$ with $n - r$. You're introducing a new variable $k = n - r$, and then eliminating $r$ using the rules permitted by algebra.

So:

\begin{align}
\sum_{r=0}^n 2^{n-r}\binom{n+r}{n} &= 2^{2n} \\\\
\sum_{r=0}^n 2^k\binom{n+(n - k)}{n} &= 2^{2n} \quad \text{(simple substitution)} \\\\
\sum_{k=0}^n 2^k\binom{n+(n - k)}{n} &= 2^{2n} \quad \text{($r \in \lbrace 0,\ldots,n\rbrace \Leftrightarrow k \in \lbrace 0,\ldots,n\rbrace$)} \\\\
\sum_{k=0}^n \frac{2^k\binom{n+(n - k)}{n}}{2^{2n}} &= 1 \quad \text{(divide)} \\\\
\sum_{k=0}^n \frac{\binom{2n - k}{n}}{2^{2n - k}} &= 1 \quad \text{(tidy up)}
\end{align}