Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs

Dashboard
Notifications
Mark all as read
Q&A

If Alice must've have classes on at least 2 days, why do you need the intersection of 3 $A_i^C$'s? [closed]

+0
−0

Closed as not constructive by Peter Taylor‭ on Aug 11, 2021 at 07:20

This question cannot be answered in a way that is helpful to anyone. It's not possible to learn something from possible answers, except for the solution for the specific problem of the asker.

This question was closed; new answers can no longer be added. Users with the reopen privilege may vote to reopen this question if it has been improved or closed incorrectly.

Can someone please rectify my MathJax? Please see the red phrase below.

  1. The question itself never touts or postulates outright that Alice "must have classes on at least 2 days", which feels like an esoteric deduction. So why must she have classes on at least 2 days?

  2. If Alice must've classes on at least 2 days, then don't we need merely the first 2 summations $\sum\limits_i P(A_i^C) - \sum\limits_{i < j} P(A_i^C \cap A_j^C)$? Why do we need $\sum\limits_{i < j<k} P(A_i^C \cap A_j^C \cap A_k^C) $?

Blitzstein, Introduction to Probability (2019 2 ed) Ch 1, Exercise 54, p 51.

Alice attends a small college in which each class meets only once a week. She is deciding between 30 non-overlapping classes. There are 6 classes to choose from for each day of the week, Monday through Friday. Trusting in the benevolence of randomness, Alice decides to register for 7 randomly selected classes out of the 30, with all choices equally likely. What is the probability that she will have classes every day, Monday through Friday? (This problem can be done either directly using the naive denition of probability, or using inclusion-exclusion.)

I modified the solution in the Selected Solutions PDF, p 8.

Inclusion-Exclusion Method

We will use inclusion-exclusion to find the probability of the complement, which is the event that she has at least one day with no classes. Let $A_i$ be the event of having at least one class on the $i^{th}$ day of the week. So $A_1$ means not having any classes on Mondays. $\cup A_i^C$ means there's at least one day with no classes.

Then $P(\cup\limits_{i = 5} A_i^C) = \sum\limits_i P(A_i^C) - \sum\limits_{i < j} P(A_i^C \cap A_j^C) + \sum\limits_{i < j<k} P(A_i^C \cap A_j^C \cap A_k^C) $

$\color{red}{\text{(terms with the intersection of 4 or more $A_i^C$'s are not needed since Alice must have classes on at least 2 days)}}$. We have

$P(A_1^C) = \dfrac{\dbinom{24}{7}}{\dbinom{30}{7}}, P(A_1^C \cap A_2^C) = \dfrac{\dbinom{18}{7}}{\dbinom{30}{7}}, P(A_1^C \cap A_2^C \cap A_3^C) = \dfrac{\dbinom{12}{7}}{\dbinom{30}{7}} $

and similarly for the other intersections. So $P(\cup\limits_{i = 5} A_i^C) = 5\dfrac{\dbinom{24}{7}}{\dbinom{30}{7}} - \dbinom{5}{2} \dfrac{\dbinom{18}{7}}{\dbinom{30}{7} + \dbinom{5}{3} \dfrac{\dbinom{12}{7}}{\dbinom{30}{7} = \dfrac{263}{377}$.

Therefore, $P(\cap\limit_{i = 5} A_i^C) = \dfrac{114}{377}$.

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

2 comment threads

Wholesale replacement of question (1 comment)
Probably not. But if you interpret $\sum_{k=0}^n k \binom{2n}{k}$ in terms of choosing a team of up t... (1 comment)

0 answers

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!

Like what we're doing? Support us! Donate