Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#2: Post edited by user avatar leovt‭ · 2021-06-26T19:36:04Z (over 3 years ago)
do not assume boss is "he"
  • The bolded sentence confuses $A$ and $B$, it should be:
  • **Meanwhile, $X \div \frac{A}{B}$ means starting out with a total of X items, splitting it up into A equal "partial groups" (where a full group is actually B of these partial groups), and then rounding up B partial groups to get a full group.**
  • Visualization 1
  • ---------------
  • First a completely integer example: There are two teams who receive 6 items, how many items does each team get? Clearly one team gets $3 = 6 \div 2$ items.
  • Visualization 2
  • ---------------
  • Now to your numbers: Two thirds of a team receive 6 items, how many items does the whole team get? The answer is $9 = 6 \div \frac23$.
  • More wordy:
  • A team has $B=3$ members, $A=2$ are in one room and the third is in another room. The boss leaves $X=6$ items in the first room and tells them that every one gets the same number of items. How many items did he give out in total?
  • 1. The "full group" are the items distributed to the team.
  • 2. The "partial groups" are the items each team member recieves (imagine the 6 items in 2 bags of three items each, one bag is a partial group). Since there are three members in the team, it takes $B=3$ partial groups to make the full group.
  • 3. "Round up" should be read as "gather" rather than in the mathematical rounding sense.
  • **Meanwhile, $6 \div \frac23$ means starting out with a total** *(for the first room)* **of 6 items, splitting it up into 2 equal "partial groups"** *(splitting it among the two members of the first room)* **(where a full group is actually 3 of these partial groups)** *(where the whole team has actually 3 members)* **, and then rounding up 3 partial groups to get a full group.** *(and then gathering the items for 3 members to get the total number of items distributed to the full team)*.
  • The bolded sentence confuses $A$ and $B$, it should be:
  • **Meanwhile, $X \div \frac{A}{B}$ means starting out with a total of X items, splitting it up into A equal "partial groups" (where a full group is actually B of these partial groups), and then rounding up B partial groups to get a full group.**
  • Visualization 1
  • ---------------
  • First a completely integer example: There are two teams who receive 6 items, how many items does each team get? Clearly one team gets $3 = 6 \div 2$ items.
  • Visualization 2
  • ---------------
  • Now to your numbers: Two thirds of a team receive 6 items, how many items does the whole team get? The answer is $9 = 6 \div \frac23$.
  • More wordy:
  • A team has $B=3$ members, $A=2$ are in one room and the third is in another room. The boss leaves $X=6$ items in the first room and tells them that every one gets the same number of items. How many items did the boss give out in total?
  • 1. The "full group" are the items distributed to the team.
  • 2. The "partial groups" are the items each team member recieves (imagine the 6 items in 2 bags of three items each, one bag is a partial group). Since there are three members in the team, it takes $B=3$ partial groups to make the full group.
  • 3. "Round up" should be read as "gather" rather than in the mathematical rounding sense.
  • **Meanwhile, $6 \div \frac23$ means starting out with a total** *(for the first room)* **of 6 items, splitting it up into 2 equal "partial groups"** *(splitting it among the two members of the first room)* **(where a full group is actually 3 of these partial groups)** *(where the whole team has actually 3 members)* **, and then rounding up 3 partial groups to get a full group.** *(and then gathering the items for 3 members to get the total number of items distributed to the full team)*.
#1: Initial revision by user avatar leovt‭ · 2021-06-26T19:33:46Z (over 3 years ago)
The bolded sentence confuses $A$ and $B$, it should be:

**Meanwhile, $X  \div \frac{A}{B}$ means starting out with a total of X items, splitting it up into A equal "partial groups" (where a full group is actually B of these partial groups), and then rounding up B partial groups to get a full group.**

Visualization 1
---------------

First a completely integer example: There are two teams who receive 6 items, how many items does each team get? Clearly one team gets $3 = 6 \div 2$ items.

Visualization 2
---------------

Now to your numbers: Two thirds of a team receive 6 items, how many items does the whole team get? The answer is $9 = 6 \div \frac23$.

More wordy:
A team has $B=3$ members, $A=2$ are in one room and the third is in another room. The boss leaves $X=6$ items in the first room and tells them that every one gets the same number of items. How many items did he give out in total?

1. The "full group" are the items distributed to the team.

2. The "partial groups" are the items each team member recieves (imagine the 6 items in 2 bags of three items each, one bag is a partial group). Since there are three members in the team, it takes $B=3$ partial groups to make the full group.

3.  "Round up" should be read as "gather" rather than in the mathematical rounding sense.


**Meanwhile, $6  \div \frac23$ means starting out with a total** *(for the first room)* **of 6 items, splitting it up into 2 equal "partial groups"** *(splitting it among the two members of the first room)* **(where a full group is actually 3 of these partial groups)** *(where the whole team has actually 3 members)* **, and then rounding up 3 partial groups to get a full group.** *(and then gathering the items for 3 members to get the total number of items distributed to the full team)*.