Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

33%
+0 −2
#2: Post edited by user avatar TextKit‭ · 2021-03-11T00:21:07Z (about 3 years ago)
  • >**Exercise 2.3.11 (Cesaro Means).** (a) Show if $\{x_n\}$ is a convergent sequence, then the sequences given by the averages $\{\dfrac{x_1 + x_2 + ... + x_n}{n}\}$ converges to the same limit.
  • I rewrote and colored the official solution.![Image alt text](https://math.codidact.com/uploads/YRP7Xiqfj7b9mEDWtD74bRYX)
  • >Let $\epsilon>0$ be arbitrary. Then we need to find an $N \in \mathbb{N} \qquad \ni n \geq N \implies\ |\frac{x_1 + x_2 + ... + x_n}{n} - L|< \epsilon \tag{1}$.
  • >Question posits $(x_{n}) \to L$. So $\exists \; M \in \mathbb{N} \ni n \ge M \implies |x_{n}-L|< M \quad (2)$.
  • >$\text{Also } \exists \; C \ni n \ge C \implies |x_{n}-L|< \epsilon/2. \quad \tag{3}$
  • **My question 1.** Where does (3) come from? How to prognosticate $\epsilon/2$? Normally you start with $\epsilon$.
  • 2. Doesn't the same argument prove all the terms can be bounded? Why simply ['the early terms in the averages can be bounded'](https://math.stackexchange.com/a/700667) ? PWhy "Because the original sequence is convergent, we suspect that we can bound ... we will be breaking the limit in two at the end" ?
  • I still don't understand how "we suspect" these bounds?
  • >Now for all $n \ge C$, we can write
  • ![enter image description here][1]
  • 3. How to presage rewriting $\color{red}{L = nL/n}?$
  • 4. How to presage splitting the sum between $x_{C - 1}$ and $x_C$?
  • Now apply the Triangle Inequality to each of the $n$ $(x_i - L)$ terms.
  • >$\begin{align}
  • \le & \frac{1}{n}( & \color{green}{\left| x_{1}-L\right| +\ldots +\left| x_{c-1}-L\right|} & + \color{brown}{\left| x_{C}-L\right| +\ldots +\left| x_{n}-L\right|} & )\\
  • & & \color{green}{\text{Each of these $(C - 1)$ terms < M by (2)} } & \color{brown}{ \text{ Each of these $(n - C)$ terms < $\epsilon/2$ by (3)}} & \\
  • \le & \frac{1}{n}( & \color{green}{(C - 1)M} & + \color{brown}{\frac{e}{2}(n - C)} & ). \tag{4}\\
  • \end{align}$
  • 5. Why's the last inequality (4) above $\le$? Why not $<$ like (2) and (3)?
  • >Because C and M are fixed constants at this point, we may choose $N_2$ so that
  • $\color{green}{(C - 1)M}\frac{1}{n} < e/2 \tag{5}$ for all $n \ge N_2$. Finally, let $N$ [in $(1)$] $= \max\{C, N_2\}$ be the desired $N$.
  • 4. Why are we authorized to choose $N_2$ so that $\color{green}{(C - 1)M}\frac{1}{n} < e/2$?
  • >$C \in \mathbb{N} \quad \therefore n - C < n \iff \color{magenta}{\frac{n - C}{n}} < 1 \tag{6}$
  • >$\begin{align}
  • \text{Equation (4) is} & & \color{green}{(C - 1)M}\frac{1}{n} & + \frac{e}{2}\color{magenta}{\frac{n - C}{n}}. \\
  • \text{Then by (5) and (6),} & & < e/2 & + e/2\color{magenta}{(1)}/ QED. \\
  • \end{align}$
  • [Stephen Abbott](http://www.middlebury.edu/academics/math/faculty/node/26391). [*Understanding Analysis* (2016 2 edn)](https://www.amazon.com/Understanding-Analysis-Stephen-Abbott/dp/1493927116). p. 55.
  • [1]: http://i.stack.imgur.com/VGDbn.png
  • >**Exercise 2.3.11 (Cesaro Means).** (a) Show if $\{x_n\}$ is a convergent sequence, then the sequences given by the averages $\{\dfrac{x_1 + x_2 + ... + x_n}{n}\}$ converges to the same limit.
  • I rewrote and colored [the official solution](https://math.codidact.com/uploads/YRP7Xiqfj7b9mEDWtD74bRYX).
  • >Let $\epsilon>0$ be arbitrary. Then we need to find an $N \in \mathbb{N} \qquad \ni n \geq N \implies\ |\frac{x_1 + x_2 + ... + x_n}{n} - L|< \epsilon \tag{1}$.
  • >Question posits $(x_{n}) \to L$. So $\exists \; M \in \mathbb{N} \ni n \ge M \implies |x_{n}-L|< M \quad (2)$.
  • >$\text{Also } \exists \; C \ni n \ge C \implies |x_{n}-L|< \epsilon/2. \quad \tag{3}$
  • **My question 1.** Where does (3) come from? How to prognosticate $\epsilon/2$? Normally you start with $\epsilon$.
  • 2. Doesn't the same argument prove all the terms can be bounded? Why simply ['the early terms in the averages can be bounded'](https://math.stackexchange.com/a/700667) ? PWhy "Because the original sequence is convergent, we suspect that we can bound ... we will be breaking the limit in two at the end" ?
  • I still don't understand how "we suspect" these bounds?
  • >Now for all $n \ge C$, we can write
  • ![enter image description here][1]
  • 3. How to presage rewriting $\color{red}{L = nL/n}?$ and subtracting $\color{red}{L}?$ from the $x_i$?
  • 4. How to presage splitting the sum between $x_{C - 1}$ and $x_C$?
  • Now apply the Triangle Inequality to each of the $n$ $(x_i - L)$ terms. **Can you please correct the MathJax below? It works on S.E. The second line of inequality is supposed to align with the first. Please remove this once corrected.**
  • >$\begin{align}
  • \le & \frac{1}{n}( & \color{green}{\left| x_{1}-L\right| +\ldots +\left| x_{c-1}-L\right|} & + \color{brown}{\left| x_{C}-L\right| +\ldots +\left| x_{n}-L\right|} & )\\
  • & & \color{green}{\text{Each of these $(C - 1)$ terms < M by (2)} } & \color{brown}{ \text{ Each of these $(n - C)$ terms < $\epsilon/2$ by (3)}} & \\
  • \le & \frac{1}{n}( & \color{green}{(C - 1)M} & + \color{brown}{\frac{e}{2}(n - C)} & ). \tag{4}\\
  • \end{align}$
  • 5. Why's the last inequality (4) above $\le$? Why not $<$ like (2) and (3)?
  • >Because C and M are fixed constants at this point, we may choose $N_2$ so that
  • $\color{green}{(C - 1)M}\frac{1}{n} < e/2 \tag{5}$ for all $n \ge N_2$. Finally, let $N$ [in $(1)$] $= \max\{C, N_2\}$ be the desired $N$.
  • 4. Why are we authorized to choose $N_2$ so that $\color{green}{(C - 1)M}\frac{1}{n} < e/2$?
  • **Can you please correct the MathJax below? It works on S.E. The second line of inequality is supposed to align with the first. Please remove this once corrected.**
  • >$C \in \mathbb{N} \quad \therefore n - C < n \iff \color{magenta}{\frac{n - C}{n}} < 1 \tag{6}$
  • >$\begin{align}
  • \text{Equation (4) is} & & \color{green}{(C - 1)M}\frac{1}{n} & + \frac{e}{2}\color{magenta}{\frac{n - C}{n}}. \\
  • \text{Then by (5) and (6),} & & < e/2 & + e/2\color{magenta}{(1)}/ QED. \\
  • \end{align}$
  • [Stephen Abbott](http://www.middlebury.edu/academics/math/faculty/node/26391). [*Understanding Analysis* (2016 2 edn)](https://www.amazon.com/Understanding-Analysis-Stephen-Abbott/dp/1493927116). p. 55.
  • [1]: http://i.stack.imgur.com/VGDbn.png
#1: Initial revision by user avatar TextKit‭ · 2021-03-09T06:12:46Z (about 3 years ago)
De-mystifying tricks – If $\{x_n\}$ converges, then Cesaro Mean converges.
>**Exercise 2.3.11 (Cesaro Means).** (a) Show if $\{x_n\}$ is a convergent sequence, then the sequences given by the averages $\{\dfrac{x_1 + x_2 + ... + x_n}{n}\}$ converges to the same limit. 

I rewrote and colored the official solution.![Image alt text](https://math.codidact.com/uploads/YRP7Xiqfj7b9mEDWtD74bRYX)

 >Let $\epsilon>0$ be arbitrary. Then we need to find an $N \in \mathbb{N} \qquad  \ni n \geq N \implies\ |\frac{x_1 + x_2 + ... + x_n}{n} - L|< \epsilon \tag{1}$. 

 >Question posits $(x_{n}) \to L$. So $\exists \; M \in \mathbb{N} \ni n \ge M \implies |x_{n}-L|< M \quad (2)$.  

 >$\text{Also } \exists \; C \ni n \ge C \implies |x_{n}-L|< \epsilon/2. \quad \tag{3}$

**My question 1.** Where does (3) come from? How to prognosticate $\epsilon/2$?  Normally you start with $\epsilon$.

2. Doesn't the same argument prove all the terms can be bounded? Why simply ['the early terms in the averages can be bounded'](https://math.stackexchange.com/a/700667) ? PWhy "Because the original sequence is convergent, we suspect that we can bound ... we will be breaking the limit in two at the end" ?   
I still don't understand how "we suspect" these bounds?

 >Now for all $n \ge C$, we can write
 ![enter image description here][1]

3. How to presage rewriting $\color{red}{L = nL/n}?$   


4. How to presage splitting the sum between $x_{C - 1}$ and $x_C$? 

 Now apply the Triangle Inequality to each of the $n$ $(x_i - L)$ terms. 

 >$\begin{align}
        \le & \frac{1}{n}( & \color{green}{\left| x_{1}-L\right| +\ldots +\left| x_{c-1}-L\right|}  & + \color{brown}{\left| x_{C}-L\right| +\ldots +\left| x_{n}-L\right|} & )\\
    & & \color{green}{\text{Each of these $(C - 1)$ terms < M by (2)} } & \color{brown}{ \text{ Each of these $(n - C)$ terms < $\epsilon/2$ by (3)}} & \\
\le & \frac{1}{n}( & \color{green}{(C - 1)M} & + \color{brown}{\frac{e}{2}(n - C)} & ). \tag{4}\\
\end{align}$

5. Why's the last inequality (4) above $\le$? Why not $<$ like (2) and (3)?

 >Because C and M are fixed constants at this point, we may choose $N_2$ so that
$\color{green}{(C - 1)M}\frac{1}{n}  < e/2 \tag{5}$ for all $n \ge N_2$. Finally, let $N$ [in $(1)$]  $= \max\{C, N_2\}$ be the desired $N$. 

4. Why are we authorized to choose $N_2$ so that $\color{green}{(C - 1)M}\frac{1}{n} < e/2$? 

 >$C \in \mathbb{N} \quad \therefore n - C < n \iff \color{magenta}{\frac{n - C}{n}} < 1 \tag{6}$

 >$\begin{align}
\text{Equation (4) is} &  & \color{green}{(C - 1)M}\frac{1}{n}  & + \frac{e}{2}\color{magenta}{\frac{n - C}{n}}. \\
\text{Then by (5) and (6),} & & < e/2 & + e/2\color{magenta}{(1)}/  QED. \\ 
\end{align}$

[Stephen Abbott](http://www.middlebury.edu/academics/math/faculty/node/26391). [*Understanding Analysis* (2016 2 edn)](https://www.amazon.com/Understanding-Analysis-Stephen-Abbott/dp/1493927116). p. 55. 

  [1]: http://i.stack.imgur.com/VGDbn.png