Post History
#1: Initial revision
Approximation of an elliptic integral
I used some nice guesswork to get this formula $$\int_0^{\frac{\pi}{2}}\sqrt{a^2\sin^2x+b^2\cos^2x}dx=\frac{ab\pi}{\left(a+b\right)\sin\left(\frac{a\pi}{a+b}\right)}$$ The comparision for some values of a and b are $a=a,b=0, value=a, exact=a$ $a=1,b=5, value=5.236, exact= 5.2525$ $a=b, value=\frac{\pi.a}{2}, exact=\frac{\pi.a}{2} $ You can also check it gives consistent result. Am i right? https://www.desmos.com/calculator/g0w1nkeotm