Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

75%
+4 −0
Q&A Is this topology basis dependent?

1 answer  ·  posted 4y ago by celtschk‭  ·  last activity 4y ago by Incnis Mrsi‭

#2: Post edited by user avatar r~~‭ · 2021-02-14T20:34:35Z (almost 4 years ago)
  • Is this topologgy basis dependent?
  • Is this topology basis dependent?
Consider a topological field $K$ and an algebraic(!) vector space $V$ over $K$, that is, $V$ has not (yet) a topology defined on it. I'm particularly interested in the case where $V$ has infinite dimension.

Now be $V^\ast$ the algebraic dual of $V$. Define a topology on $V^\ast$ through pointwise convergence, or equivalently, consider $V^\ast$ as subset under the subspace topology of $K^V$ under the product topology. This topology obviously makes $V^\ast$ a topological vector space over $K$.

Denote with $V^{[\ast]}$ the subspace of $V^\ast$ which consists of all $\phi\in V^\ast$ whose kernel has finite codimension, that is $V/\operatorname{ker}(\phi)$ has finite dimension. Obviously $V^{[\ast]}$ also is a topological vector space over $K$.

Now consider an arbitrary basis $\\{b_i:i\in I\\}$ of $V$ (where $I$ is an appropriate index set). Then one can define covectors $\\{\omega_i:i\in I\\}$ by $\omega_i(b_j)=\delta_{ij}$. Of course different bases $\{b_i\}$ lead to different covectors $\omega_i$.

However (if I made no error in my thoughts) in all cases $\\{\omega_i:i\in I\\}$ is a basis of $V^{[\ast]}$. Therefore the linear map $f:V\to V^{[\ast]}$ which maps $b_i$ to $\omega_i$ is a vector space isomorphism. Now we can define a set $U\subseteq V$ to be open if its image under $f$ is open. This topology then also makes $V$ a topological vector space over $K$.

My question now is:

> Does this topology on $V$ depend on the choice of basis $\\{b_i\\}$?
#1: Initial revision by user avatar celtschk‭ · 2021-02-14T19:32:06Z (almost 4 years ago)
Is this topologgy basis dependent?
Consider a topological field $K$ and an algebraic(!) vector space $V$ over $K$, that is, $V$ has not (yet) a topology defined on it. I'm particularly interested in the case where $V$ has infinite dimension.

Now be $V^\ast$ the algebraic dual of $V$. Define a topology on $V^\ast$ through pointwise convergence, or equivalently, consider $V^\ast$ as subset under the subspace topology of $K^V$ under the product topology. This topology obviously makes $V^\ast$ a topological vector space over $K$.

Denote with $V^{[\ast]}$ the subspace of $V^\ast$ which consists of all $\phi\in V^\ast$ whose kernel has finite codimension, that is $V/\operatorname{ker}(\phi)$ has finite dimension. Obviously $V^{[\ast]}$ also is a topological vector space over $K$.

Now consider an arbitrary basis $\\{b_i:i\in I\\}$ of $V$ (where $I$ is an appropriate index set). Then one can define covectors $\\{\omega_i:i\in I\\}$ by $\omega_i(b_j)=\delta_{ij}$. Of course different bases $\{b_i\}$ lead to different covectors $\omega_i$.

However (if I made no error in my thoughts) in all cases $\\{\omega_i:i\in I\\}$ is a basis of $V^{[\ast]}$. Therefore the linear map $f:V\to V^{[\ast]}$ which maps $b_i$ to $\omega_i$ is a vector space isomorphism. Now we can define a set $U\subseteq V$ to be open if its image under $f$ is open. This topology then also makes $V$ a topological vector space over $K$.

My question now is:

> Does this topology on $V$ depend on the choice of basis $\\{b_i\\}$?