Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics

Dashboard
Notifications
Mark all as read
Q&A

Are there useful topologies on Cartesian products “in between” the product topology and the box topology?

+7
−0

On the Cartesian product of topological spaces, there are two standard topologies: One is the product topology, the other is the box topology.

As is well known, the box topology is generated by the product of open sets, and the product topology is generated by such products with the restriction that only finitely many factors are not the full space.

However in principle there could be other topologies defined on the product which sit “in between” product and box topology. As a simple example, one might demand that at most countably many factors are not the full space. Or one might take the index set to have a topology, and demand that the set of indices corresponding to non-full spaces is relatively compact.

My question now is: Are there any such ”in between” topologies that are actually known to be useful?

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

0 comments

0 answers

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!