Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Post History

#1: Initial revision by user avatar Derek Elkins‭ · 2021-01-16T03:53:49Z (about 3 years ago)
This expression is not the clearest way of writing this, but the idea is that we are defining the components of the covector $Q(q)$ on a basis of differential 1-forms $dq_j$, i.e. $Q = \sum_{j=1}^k Q_j dq_j$. This is made more clear by [Wikipedia's expression of this statement](https://en.wikipedia.org/wiki/Generalized_forces#Generalized_forces): $Q_j = \sum_{i=1}^n \langle \mathbf F_i, \frac{\partial \mathbf r_i}{\partial q_j}\rangle$. We get the result from the book via: $$\begin{align}
\sum_{j=1}^k Q_j dq_j & = \sum_{j=1}^k \sum_{i=1}^n \left\langle \mathbf F_i, \frac{\partial \mathbf r_i}{\partial q_j}\right\rangle dq_j \\\\
& = \sum_{i=1}^n \sum_{j=1}^k \left\langle \mathbf F_i, \frac{\partial \mathbf r_i}{\partial q_j}\right\rangle dq_j \\\\
& = \sum_{i=1}^n \left\langle \mathbf F_i, \sum_{j=1}^k \frac{\partial \mathbf r_i}{\partial q_j} dq_j\right\rangle \\\\
& = \sum_{i=1}^n \left\langle \mathbf F_i, d\mathbf r_i\right\rangle
\end{align}$$
where the final equality uses the [differential calculus expression of a differential 1-form](https://en.wikipedia.org/wiki/Differential_form#Differential_calculus) in terms of basis 1-forms: $d\mathbf f = \sum_{j=1}^k \frac{\partial \mathbf f}{\partial x_j}dx_j$. It's a little confusing but not incorrect to explicitly write out the components on one side but incorporate them on the other. This is compounded by the fact that the differential 1-form $d\mathbf r_i$, among other relevant concepts, is never explicitly defined in the book (at least prior to here). It doesn't need to give a ground up reconstruction of differential manifolds, but it probably wouldn't have hurt for it to have spent an introductory section or at least an appendix setting notation and terminology for it.