Post History
#1: Initial revision
Why always rationalize a denominator?
Schoolteachers will insist that their students present answers to problems with rational (indeed integral) denominators. Never $1/\sqrt3$, for example, but instead $\sqrt3/3$. That's also how math textbooks present answers. I understand why it's important to learn how to rationalize a denominator, why we sometimes want denominators rational. But why should students put every single answer in those terms? What's wrong with presenting a number as $1/\sqrt3$?