Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics

Dashboard
Notifications
Mark all as read
Q&A

When and how should the $Z_n^2$ statistic be used?

+7
−0

I was reading a paper (Kuechel et al. 2020, since retracted; see original version) claiming a detection of a high-frequency periodic signal coming from a known pulsar.[1] The authors used something called the $Z_n^2$ statistic, a test I'm not familiar with. Assuming we have a time series of $N+1$ photons with arrival times $t_0,t_1,t_2,\dots,t_N$, we write the phase of the $i$th photon after the first as $$\phi_i=\nu(t_i-t_0)+\dot{\nu}(t_i-t_0)^2/2+\cdots$$ with $\nu,\dot{\nu},\dots$ being the frequency and frequency time derivatives of the signal. The $Z_n^2$ statistic is then defined as $$Z_n^2=\frac{2}{N}\sum_{k=1}^n\left[\left(\sum_{i=1}^N\cos(2\pi k\phi_i)\right)^2+\left(\sum_{i=1}^N\sin(2\pi k\phi_i)\right)^2\right]$$ Higher values of $Z_n^2$ appear to correspond to a strong statistical significance of a signal. In this case, the authors picked $n=1$ and used the $Z_1^2$ statistic.

I've never encountered the $Z_n^2$ statistic before, and I've had a hard time tracking down and/or accessing references, so my question has to do with its applicability. I assume it should be used only for periodic signals - is that right? If so, what values of $n$ are appropriate for these signals? Is $n=1$ usually adequate?


  1. As a side note, folks who know more about the instrument used than I do are fairly confident that this detection isn't actually coming from the system. While the source has a known frequency of $\sim567$ Hz, the frequency Kuechel et al. report detecting is $\sim890$ Hz, which corresponds to a well-known instrumental frequency of the telescope, NuSTAR. Therefore, while the signal is real, it's likely not astronomical in origin. As such, the preprint has been removed. ↩︎

Why does this post require moderator attention?
You might want to add some details to your flag.
Why should this post be closed?

2 comments

Worth mentioning that the paper has now been taken down as they were detecting "dead time in the NuSTAR detectors". This is apparently "further evidence for why standard timing methods should not be used with NuSTAR data" Mithrandir24601‭ 6 months ago

@Mithrandir24601 Thank you! I hadn't seen that it had been taken down. HDE 226868‭ 5 months ago

0 answers

Sign up to answer this question »

This community is part of the Codidact network. We have other communities too — take a look!

You can also join us in chat!

Want to advertise this community? Use our templates!