**Mathematics Codidact (MCD)** is for people studying mathematics at any level and professionals in related fields.
The following is an outline of subjects covered in MCD. It is not necessarily a *complete* set of *independent* related fields; it only wants to help users to know the scope of MCD.
If you have any suggestion about removing some items from the list, editing them, or adding some new ones, you can post it as an answer to this post. You can also discuss the list in the math channel of Codidact Communities Server on Discord.
<details>
<summary><h1 style="color:red;">Subjects Covered in Math Codidact</h1></summary>
<h3 style="color:blue;" >General</h3>
<ul style="color:green;" >
<li>Mathematics Education</li>
<li>Mathematics Research</li>
<li>History of Mathematics</li>
<li>Philosophy of Mathematics</li>
<li>Mathematics Resources</li>
<li>Mathematics Softwares</li>
<li>Recreational Mathematics</li>
<li>Mathematical Modeling</li>
</ul>
<h3 style="color:blue;" >Foundations of Mathematics</h3>
<ul style="color:green;" >
<li>Mathematical Logic</li>
<li>Set Theory</li>
<li>Model Theory</li>
<li>Proof Theory and Constructive Mathematics</li>
<li>Algebraic Logic</li>
<li>Computability and Recursion Theory</li>
<li>Nonstandard Models</li>
</ul>
<h3 style="color:blue;" >Discrete Mathematics & Algebra</h3>
<ul style="color:green;" >
<li>Basic Algebra</li>
<li>Combinatorics</li>
<li>Graph Theory</li>
<li>Order, Lattices, Ordered Algebraic Structures</li>
<li>General Algebraic Systems</li>
<li>Number Theory</li>
<li>Field Theory and Polynomials</li>
<li>Commutative Algebra</li>
<li>Algebraic Geometry</li>
<li>Linear Algebra</li>
<li>Associative Rings and Algebras</li>
<li>Nonassociative Rings and Algebras</li>
<li>Category Theory</li>
<li>Homological Algebra</li>
<li>K-Theory</li>
<li>Group Theory and Generalizations</li>
<li>Topological Groups, Lie Groups</li>
</ul>
<h3 style="color:blue;" >Analysis</h3>
<ul style="color:green;" >
<li>Calculus</li>
<li>Real Analysis</li>
<li>Complex Analysis</li>
<li>Measure and Integration</li>
<li>Potential Theory</li>
<li>Special Functions</li>
<li>Differential Equations</li>
<li>Dynamical Systems and Ergodic Theory</li>
<li>Difference and Functional Equations</li>
<li>Sequence, Series, Summability</li>
<li>Approximations and Expansions</li>
<li>Harmonic Analysis</li>
<li>Integral Transforms, Operational Calculus</li>
<li>Integral Equations</li>
<li>Functional Analysis</li>
<li>Operator Theory</li>
<li>Calculus of Variations and Optimal Control; Optimization</li>
</ul>
<h3 style="color:blue;" >Geometry & Topology</h3>
<ul style="color:green;" >
<li>Geometry</li>
<li>Convex and Discrete Geometry</li>
<li>Differential Geometry</li>
<li>General Topology</li>
<li>Algebraic Topology</li>
<li>Manifolds and Cell Complexes</li>
<li>Differential Topology</li>
<li>Global Analysis, Analysis on Manifolds</li>
</ul>
<h3 style="color:blue;" >Applied Mathematics</h3>
<ul style="color:green;" >
<li>Probability Theory and Stochastic Processes</li>
<li>Statistics</li>
<li>Numerical Analysis</li>
<li>Theoretical Computer Science</li>
<li>Mathematical Physics, Mathematical Chemistry, Mathematical Biology</li>
<li>Game Theory, Mathematical Economics, Mathematical Sociology, Mathematical Psychology, Mathematical Treatment</li>
<li>Operations Research, Mathematical Programming</li>
<li>System Theory; Control</li>
<li>Information and Communication Theory, Circuits</li>
</ul>
</details>