Comments on Universal property of quotient spaces
Post
Universal property of quotient spaces
A typical textbook theorem about quotient space is as follows:
Theorem (Gamelin-Greene Introduction to Topology p.106): Let $f$ be a continuous function from a topological space $X$ to a topological space $Y$. Let $\sim$ be an equivalence relation on $X$ such that $f$ is constant on each equivalence class. Then there exists a continuous function $g: X/{\sim} \rightarrow Y$ such that $f=g \circ \pi$.
It is very easy to prove it by using the definition of continuous functions between topological spaces because $\pi^{-1}(g^{-1}(V))=f^{-1}(V)$ for any open set $V$ in $Y$ with the well-defined $g([x]):=f(x)$. One such proof is done in the mentioned textbook as follows:
Proof. Since $f$ is constant on each equivalence class, one can define $g:X/{\sim}\to Y$ with $g([x])=f(x)$. One can easily check that $f=g \circ \pi$. To show that $g$ is continuous, consider any open set $V$ in $Y$. Since $f^{-1}(V)$ is open in $X$ by continuity of $f$ and $\pi^{-1}(g^{-1}(V))=(g\circ \pi)^{-1}(V)=f^{-1}(V)$, by the definition of the quotient topology on $X/{\sim}$, $g^{-1}(V)$ is open and the proof is complete.
But when I try to use the definition of continuity at a point, which I think is supposed to be easy too, I got stuck.
Let $x\in X$ and denote $[x]=\pi(x)$. I want to show that $g$ is continuous at $[x]$. Now let $U\subset Y$ be a neighborhood of $g([x])$. The goal is to find a neighborhood $O$ of $[x]$ in $X/{\sim}$ such that $g(O)\subset U$.
Since $f(x)=g([x])$, and $f$ is continuous (at $x$), there exists a neighborhood $N\subset X$ such that $x\in N$ and $f(N)\subset U$.
It suffices to show that $\pi(N)$ is a neighborhood of $[x]$ since $g(\pi(N))=f(N)\subset U$. But now I don't see how to show that $[x]$ is an interior point of $\pi(N)$.
Question: How can I go on from here or do I need to change the argument completely?
I suppose I would either need to change $\pi(N)$ to something else or apply some property of $\pi$ that I have not used yet.
1 comment thread