Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on Solve $\int_0^{\dfrac{\pi}{6}} \sec^3 \theta \mathrm d\theta$

Parent

Solve $\int_0^{\dfrac{\pi}{6}} \sec^3 \theta \mathrm d\theta$

+0
−0

Evaluate $$\int_0^{\dfrac{\pi}{6}} \sec^3 \theta \mathrm d\theta$$

I was trying to solve it following way.

$$\int_0^{\dfrac{\pi}{6}} \sec^2\theta \sec\theta \mathrm d\theta$$ $$\int_0^{\dfrac{\pi}{6}}\sec^2\theta \mathrm d(\sec\theta)$$ $$[\tan\theta]_0^\dfrac{\pi}{6}$$ $$\tan\frac{\pi}{6}$$ $$\frac{1}{\sqrt{3}}$$

I had found the value. But, my book had solved it another way. They took

$$\tan\theta=z$$ Then, they solved it. They had got $\frac{1}{3}+\frac{1}{2}\ln\sqrt{3}$. My answer is approximately close to their. Is my answer correct? While doing Indefinite integral I saw that I could solve problem my own way. But, my answer always doesn't match with their. So, is it OK to find new/another answer of Integral? In algebraic expression,"no matter what I do the answer always matches". But, I got confused with Integration.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

How does $\sec\theta d\theta = d\left(\sec\theta\right)$? (1 comment)
Post
+0
−0

Is my answer correct?

My answer isn't correct. Cause, differentiation of $\sec x=\sec x\tan x$. I had differentiate inside integration.

$$\int_0^{\dfrac{\pi}{6}} \sec^3 \theta \mathrm d\theta$$ $$\int_0^{\dfrac{\pi}{6}} (1-\tan^2 \theta) \frac{d}{d \theta} (\sec \theta \tan \theta) \mathrm d\theta$$

That's the correct one. But, you got it wrong. I have differentiate.

my answer always doesn't match with their. So, is it OK to find new/another answer of Integral?

Saying to Indefinite Integral, if you integrate an equation then, I may find lots of answer. But, if I (you) put specific value instead of $\theta$ or, $x$. Than, you will get same value if your answer isn't wrong.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

1 comment thread

Self-answer as yourself (2 comments)
Self-answer as yourself
Derek Elkins‭ wrote over 3 years ago

While it's fine to self-answer a question, why are you answering it as if you weren't the person to ask it, e.g. saying "your answer isn't correct" and "you got it wrong"? There is no need to pretend like you are a third party who just happened upon this question. In fact, it's a bit confusing and bizarre to do so.

deleted user wrote over 3 years ago

Derek Elkins‭ I like to answer that way. O:-) so, I will edit it later