Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Comments on Why rational to be indifferent between two urns, when urn A has 50-50 red and white balls, but you don't know urn B's ratio?

Post

Why rational to be indifferent between two urns, when urn A has 50-50 red and white balls, but you don't know urn B's ratio?

+2
−1

Please see the embolden sentence below. Assume that I'm risk adverse and "prefer the known chance over the unknown". Why's it irrational for me to choose A?

      Also, there were problems on the probability side. One famous debate concerned a paradox posed by Daniel Ellsberg (of later fame due to publishing the Pentagon Papers) It involved multiple urns, some with known and some with unknown odds of drawing a winning ball. Instead of estimating the expected value of the unknown probability, and sticking with that estimate, most people exhibit strong aversion to ambiguity in violation of basic probability principles. A simpler version of the paradox would be as follows. You can choose one of two urns, each containing red and white balls. If you draw red you win $100 and nothing otherwise. You know that urn A has exactly a 50-50 ratio of red and white balls. In urn B, the ratio is unknown. From which urn do you wish to draw? Most people say A since they prefer the known chance over the unknown, especially since some suspect that urn B is perhaps stacked against them. But even if people can choose the color on which to bet, they still prefer A. Rationally, you should be indifferent, or if you think you can guess the color ratios, choose the urn with the better perceived odds of winning. Yet, smart people would knowingly violate this logical advice.

Paul Slovic, The Irrational Economist (2010), p 56.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

1 comment thread

General comments (1 comment)
General comments
Derek Elkins‭ wrote over 3 years ago

Well, what probability do you assign to getting a red ball from urn B? If that differs from the probability of getting a white ball, why? If it doesn't, then the probabilities are the same in both cases.